2. 范围 ................................................................................................................................ 4 2.1 研究目标 ................................................................................................................ 5 2.2 研究限制 ................................................................................................................ 6 2.3 DUNLAP 情景的应用 ........................................................................................ 6 3. 基线飞机 ................................................................................................................ 9 3.1 一般描述 ............................................................................................................. 9 3.2 基线探测器类型 ............................................................................................. 11 3.3 位置监测 ............................................................................................................. 12 3.4 系统要求 ............................................................................................................. 17 3.5 飞行雷达配置 ................................................................................................ 18 3.6 空客探测系统................................................................................ 22 4. 技术方法 ...................................................................................................... 23 4.1 事故研究数据 .............................................................................................. 24 4.2 火灾信号性质 ................................................................................................ 28 4.3 传感器技术 ................................................................................................ 31 4.4 驾驶舱设计方法 ............................................................................................. 33 5. 概念 ...................................................................................................................... 38 5.1 一般描述 ...................................................................................................... 38 5.2 探测器类型 ................................................................................................ 40 5.3 位置监视器 ................................................................................................ 43 5.4 系统要求 ................................................................................................ 50 5.5 飞行HTD ECK 设计 ................................................................................................ 52 5.6 机组程序 ...................................................................................................... 57 5.7 系统安装成本 ................................................................................................ 58
飞机设计异常复杂,这有几个原因,其中之一就是该过程涉及大量完全不同的设计学科。我们投入了大量精力来协调和优化飞机设计,试图将所有学科以相同的细节水平考虑在内。在正在进行的 H2020 AGILE 研究中,正在建立飞机 MDO(多学科设计优化)流程,将多种设计工具和能力联系在一起。本文重点评估主要机载系统设计参数对其他学科的影响。从基线飞机(AGILE DC1 区域涡扇发动机)开始,已经根据飞机重量、燃油消耗和发动机性能的变化量化了每个参数的影响。该分析是一个有用的起点,可以更好地理解新型机载系统配置(如 More 和 All Electric)对整体飞机设计的重要性和影响。
本报告是DLR设计挑战2024的一部分创建的,并展示了EcoAir,这是一架针对76名乘客的区域飞机,计划于2050年进入服务。该报告包含最初的设计概念注意事项,详细的技术数据和成本计算的任务分析。ATR-72-600是EcoAir的参考和基线飞机。在概念设计阶段,主要优化目标是操作灵活性,直接运营成本和飞机效率。所得设计利用低温液体氢作为唯一的燃料来源。燃料在燃料电池中用于为4个主要发动机和创新的边界层摄入发动机供电,从而显着提高了空气动力学效率。这使EcoAir能够完全无排放。电池可在需要时从燃料电池中存储过多的电能,并在板载系统中供应。这保证了最佳能源利用。其他关键功能包括翅膀上的鲨鱼皮技术和混合层流控制控制,从而减少了空气动力学的阻力。此外,可折叠的机翼可以允许在较小的类别中将生态航空归类,从而可以访问众多机场。许多机场。被分类为较小类别的另一个优点还需要减少限制性操作要求。通过电动的鼻子起落轮进一步降低了这些要求,这使自动滑行并因此驱逐了对卡车的需求。ecoAir wird mit der atr-72 als referenz- undflugzeug verglichen。通过无窗的机身最小化制造成本,同时保持了乘客友好的机舱,并带有反对布局和OLED屏幕,可以投射外部视图。飞机用单个飞行员运行,并得到AI系统的支持,可维持高安全标准并降低成本。论文特征与参考飞机相比,总体导致的直接运营成本明显降低。本报告是DLR设计挑战2024的一部分创建的,并引入了EcoAir,这是一架针对2050年计划调试的76名乘客的简短飞机。该报告显示了有关基本概念,详细技术数据和成本计算的任务分析的第一个考虑因素。在指定,操作灵活性,直接运营成本和环境影响方面是优化目标。结果是唯一的燃料。燃料用于燃料电池中,以驱动四个主要发动机和创新的后引擎,以用于边界移动吸收,从而显着提高了空气动力学效率。以这种方式,Ecoair完全无效 - 无效。电池可在燃料电池中存储过多的电能,并在必要时将其转发到内部系统。这保证了能源的最佳使用。关键特征是鲨鱼皮技术和降低空气阻力的机翼上的混合层流控制控制。此外,翼展可以是可折叠的,以便在较小的飞机类别中获得更便宜的分类,该类别可以使用更多的机场。较小类别中分类的另一个优点是限制性的操作要求较小。通过启用自动角色的电动错误,这些要求将进一步降低,因此不再需要推动力。无窗机身的制造成本保持较低,而带有自由空间平面图和OLED屏幕的乘客机舱则设计了外观的设计。飞机由一名飞行员提供服务,该飞行员得到了基于AI的系统的支持,以确保高安全标准并降低机组人员的成本。与参考飞机相比,这些特征导致直接运营成本明显降低。