情景制定考虑了气旋发生的概率、气旋登陆时的角度、气候变化导致的海平面上升、潮汐的昼夜变化、潮汐的季节性变化、堤坝溃坝的位置以及溃坝的几何特性。孟加拉国沿海圩田的堤坝正在根据沿海堤坝改善项目 (CEIP) 进行重新设计 (BWDB, 2012)。CEIP 第一阶段对 17 个沿海圩田(包括 48 号圩田(研究区))的堤坝进行了重新设计,该阶段于 2013 年完成 (Islam et al., 2013)。在 CEIP 下,这 17 个沿海圩田的临海堤坝针对 25 年一遇的风暴潮气旋进行了重新设计 (Islam et al., 2013)。因此,本论文使用 25 年一遇的风暴潮气旋进行情景制定。气旋的角度影响研究区域的风暴潮高度。风暴潮高度随着风暴与海岸线的角度而增加(Azam 等人,2004 年)。潮汐条件影响风暴潮高度。研究区域高潮位和低潮位的风暴潮相差 1.2 米(Azam 等人,2004 年)。潮汐也会随季节变化。雨季和旱季的潮汐平均变化为 1.3 米。选择决口位置时考虑到没有红树林、沙丘、宽阔的海滩等防御风暴潮的设施。研究区域有 20 公里的临海堤坝。日本土木工程师学会(JSCE)团队进行的调查表明,研究区域的临海堤坝在气旋锡德(2007 年)期间被淹没(Hasegawa,2008 年)。因此,研究区临海堤坝的东、西和中部选择了三个溃坝位置(图 6.13)。这三个位置没有红树林、沙丘和宽阔的海滩。堤坝溃坝的几何形状和形成主要取决于风暴潮高度和堤坝的土壤特性。孟加拉国的沿海堤坝通常是土堤。堤坝溃坝的几何特性和溃坝所需的时间是按照美国垦务局(Zagonjolli,2007)的指示计算的。为了生成概率洪水图(PFM),我们结合不同的参数生成了一个由 72 个场景组成的场景矩阵(表 6-3),为了确定堤坝溃坝的关键位置,我们开发了三种最坏情况场景(表 6-4)。第 6.3 节介绍了所开发场景的详细信息。4.7. 分析和比较不同场景的结果
约翰·杰克逊:我叫约翰·杰克逊。我和莫琳一样,都是巴马本地人。我在这里已经住了很长时间。当我们的指导委员会成立时,基本上是在莫伊拉郡的工作中,我加入指导委员会的唯一目的是尝试第二次修建堤坝。我们第一次尝试修建堤坝是在 2012 年。这是郡和 CMA(集水区管理局)的一项正式工作,我们完成了整个过程。我们制定了一个计划,但仅此而已。在 2012 年那个年代,人们并不关心对城镇的影响。重要的是基于资产价值的经济比率与修建堤坝的成本。所以,仅此而已。现在,我们的理解是规则已经改变,我们人类被考虑在内——我们的福利——所以我们正在第二次修建堤坝。我看到你们在这次会议上所写的参考条款之一是“堤坝对气候变化有影响吗?”我的观点是,它们根本没有任何重大影响,尽管我可能完全错了。事实恰恰相反——堤坝保护我们免受气候变化的影响,我认为了解这两点非常重要。我们预计未来洪水会更严重;如果我们能够修建堤坝,而不是花费数百万美元进行恢复,我们应该能够高枕无忧,也许可以帮助偏远地区的其他人,而不是自己承担所有艰苦的工作。
您会在图 4 中注意到,许多特征(例如断层、堤坝、主要岩层和水道)都呈西北/东南、东/西或东北/西南走向。伊尔干克拉通主要岩带呈西北排列,反映了其形成过程,当时板块上的“筏状”陆地相互碰撞,形成了被花岗岩侵入的片麻岩带。与这些事件相关的应力导致整个克拉通的粗面岩堤坝开裂和侵入。这些堤坝可以作为土壤材料(例如 Binneringie 堤坝)在当地具有重要意义,并且经常与镁铁质红土脊有关。
您会在图 4 中注意到,许多特征(例如断层、堤坝、主要岩层和水道)都呈西北/东南、东/西或东北/西南走向。伊尔干克拉通主要岩带呈西北排列,反映了其形成过程,当时板块上的“筏状”陆地相互碰撞,形成了被花岗岩侵入的片麻岩带。与这些事件相关的应力导致整个克拉通的粗面岩堤坝开裂和侵入。这些堤坝可能是具有当地重要意义的土壤材料(例如 Binneringie 堤坝),并且经常与镁铁质红土脊有关。
项目要求 需要定期维护疏浚,每 3 至 5 年一次,疏浚量约为 9,000 至 15,000 立方码。 部分河流的上一次疏浚是在 2015 年。 沉积物采样已使用 FY23 资金完成。 将使用 FY24 资金启动疏浚物管理初步评估。 需要进行维护疏浚,但疏浚前需要确定和协调放置地点。 项目的洪水风险管理组件(堤坝系统)需要维修。北堤坝的堤坝在 2012 年进行了大规模重建。南堤坝需要维修。 南堤坝维修的工程和设计正在使用 FY23 BIL 资金完成。这些维修的建设资金由 FY24 BIL 提供。 北岸需要进行小规模维护,包括修复剥落的混凝土、修复土堤和安装挡水板起重设备。
补充信息:1. 项目背景和授权。1927 年密西西比河发生毁灭性的洪水之后,国会通过了 1928 年防洪法案 (FCA),授权实施密西西比河及支流 (MR&T) 项目。密西西比河堤坝 (MRL) 项目由 1928 年 FCA 修正案授权,是 MR&T 项目的一部分,可防止密西西比河下游 (LMR) 冲积谷被淹没,该河始于密苏里州开普吉拉多,缓缓流入墨西哥湾。密西西比河堤坝通过将水流限制在堤坝水道内(除非水流进入回水区或被故意转移到洪泛区),保护主要城市和城镇、发达的工业区、宝贵的农田和野生动物栖息地免受项目设计洪水 (PDF) 的侵袭。回水区和泄洪道都是整个 MRL 项目不可或缺的部分。回水区是密西西比河主干堤坝系统在流入河流的主要支流河口处留下缺口的必然结果。在大洪水期间,密西西比河的洪水会倒灌进缺口和/或阻止支流系统的排水流出回水区。MR&T 项目增加了四个回水区。LMR 北部的圣弗朗西斯河回水区和白河回水区,LMR 中部的亚祖河回水区,以及 LMR 南部的红河回水区。这些回水区通常通过使用回水堤坝来运行,这些回水堤坝与 MRL 系统、水控制结构、水泵以及有时的连接水渠相连。圣弗朗西斯河、白河和红河回水区各自都有运行的泵站; Huxtable 泵站建于 1977 年,Graham-Burke 泵站建于 1964 年,Tensas-Cocodrie 泵站建于 1986 年。泄洪道旨在安全地将多余的洪水从堤坝系统的关键河段转移出去,以防止 PDF 超过堤坝设计高程。最初的 MR&T 项目提供了五条泄洪道,分别是 LMR 北部的 Birds Point-New Madrid 泄洪道、LMR 中部的 Boeuf/Eudora 泄洪道以及 LMR 南部的 West Atchafalaya、Morganza 和 Bonnet Carre 泄洪道。Boeuf/Eudora 泄洪道原本会转移
本报告介绍了卡特里娜飓风过后几组研究人员进行的实地调查结果,旨在研究区域防洪系统的性能以及新奥尔良地区发生的洪水和损失。这些努力的主要重点是获取与防洪系统性能相关的易逝数据和观测数据,以免它们因正在进行的应急响应和修复操作而丢失。最初的实地调查持续了大约两周半的时间,从 2005 年 9 月 28 日到 10 月 15 日。这些实地调查的开始日期是通过平衡在紧急修复操作损坏或掩盖之前收集重要易腐数据的需要与避免干扰此类紧急操作的需要以及与安全访问、后勤等相关的问题来确定的。幸运的是,主要的实地调查小组及时到达,因为有很多次,小组单位在正在进行的紧急修复活动覆盖重要信息之前几天甚至几个小时才到达并调查现场。飓风卡特里娜 (Hurricane Katrina) 产生的风暴潮导致新奥尔良大约 75% 的大都市区出现多处溃坝,随后被洪水淹没。大多数堤坝和防洪墙的溃坝都是由溢流引起的,因为风暴潮越过了堤坝和/或防洪墙的顶部,产生了侵蚀,随后导致溃坝和溃口。溢流在防洪系统的东侧最为严重,因为博格尼湖的水向西流向新奥尔良,并沿着密西西比河的下游向南流去。严重的溢流和侵蚀在这些地区造成了许多溃口。内港航道 (IHNC) 沿线和密西西比河湾出口 (MRGO) 航道西段的溢流程度较小,但这次溢流再次产生了侵蚀并导致更多的堤坝溃坝。现场观察表明,庞恰特雷恩湖前的大部分堤坝几乎没有发生溢流,但在多个地点观察到了轻微溢流和/或波浪溅溢的证据。新奥尔良东部保护区西北角的堤坝系统出现裂缝,靠近湖畔机场。这三处堤坝垮塌很可能是由堤坝下方的地基土壤破裂引起的,再往西,在奥尔良东岸运河区,第 17 街和伦敦大道运河沿岸发生了三处堤坝溃坝,溃坝时的水位低于运河沿岸防洪墙的顶部。
USACE PB 2019-04 为将生命安全纳入沿海风暴风险管理 (CSRM) 研究提供了指导。本指导基于堤坝,当防洪结构比罕见风暴事件期间更频繁(或持续)地承受荷载时,旧金山 CSRM 本质上在更高的 SLC 率下发挥堤坝的作用。第 4b 段要求在评估海平面上升和 CSRM 提供的保护导致的生命风险增加或转变时,识别生命风险来源。第 5d 段要求对所有新堤坝系统进行生命安全风险评估。项目交付团队 (PDT) 计划在选定 TSP 后进行详细的生命安全评估。对于初始替代方案阵列,PDT 已进行了定性评估,并记录在本补充报告中。
密西西比河及其支流防洪工程的四大要素是:堤坝,用于控制和分流洪水;泄洪道,用于疏导密西西比河关键河段的过量洪水;河道改善与稳定,用于稳定河道以提供高效的航运路线,提高河流的洪水承载能力,保护堤坝系统;支流盆地改善,用于主要排水系统和防洪,如水坝和水库、抽水站、辅助水渠等。