抗静电材料2、电磁屏蔽3、压阻传感器4和形状记忆聚合物(SMP)材料。5,6聚合物和CNT的纳米复合材料的电导率随着纳米填料含量的增加而急剧增加,超过渗透阈值,该阈值被描述为在3D空间中形成互连接触导电网络的临界值。此外,通过加入CNT,聚合物的绝缘体-导体转变可以在低渗透阈值下实现,这取决于CNT的排列程度和单个CNT的均匀空间分布。尽管如此,由于纳米管之间的范德华相互作用引起的高电子离域性,MWCNT倾向于在液体或固体介质中形成团聚体和束。
研究了液晶环氧树脂 (LCER) 的蠕变行为,并将其与由相同环氧单体制备的非 LCER 进行了比较。使用 Burgers 模型评估实验数据以解释液晶 (LC) 相的增强作用。使用时间-温度叠加原理预测材料的长期性能。结果表明,在树脂网络中引入 LC 相可以降低材料的蠕变应变和蠕变应变率,尤其是在高温下。从模拟中提取的参数表明,LC 相的存在增强了树脂的瞬时弹性、阻滞弹性和永久流动阻力。提出用刚性填料效应和交联效应来解释增强机制。
摘要。纳米技术为各种新型国防应用打开了大门,例如智能材料、新型燃料源、储能设备、更硬/更轻的平台和更新的医疗应用。使用复合材料代替钢材可以组装轻型飞机,从而减少燃料消耗、二氧化碳排放和燃料成本。由于这些聚合物纳米复合材料和材料具有增强的机械、电气和热性能,它们已在军事、汽车、电子、食品和休闲等多个国防相关领域得到应用。本概述旨在深入了解轻质纳米填料增强聚合物纳米复合材料的快速发展能力,并探索其在各种国防相关应用中的潜在用途。
环氧树脂是一种合成聚合物材料,由于其良好的机械、热、化学和耐腐蚀特性而广泛应用于复合材料制造。然而,其固有的脆性和低断裂韧性限制了其应用。为了解决这些问题,人们探索了加入液态环氧化天然橡胶 (LENR) 来增强环氧树脂的韧性和整体强度。将液态环氧化天然橡胶 (LENR) 添加到环氧树脂中的影响表明,在 3%wt LENR 含量下可实现最佳机械强度。值得注意的是,LENR 确实会影响环氧树脂的结晶速率。本研究旨在开发和表征结合橡胶增韧、镍锌 (NiZn) 铁氧体和石墨烯纳米片 (GNP) 填料的纳米复合材料。目标是研究它们的机械、热和电性能,并与仅由环氧树脂/LENR组成的复合材料进行比较。即使在低填料负载下,这些纳米粒子的引入也显着增强了复合材料的机械性能。值得注意的是,随着 NiZn 铁氧体的加入,环氧树脂/LENR/NiZn 铁氧体纳米复合材料的机械强度有所提高。实验分析表明,在 4%wt NiZn 铁氧体和 0.6%wt GNP 时可实现最佳强度。此外,这些纳米复合材料表现出全面的热稳定性改善。在电气方面,与环氧树脂/LENR/NiZn 铁氧体和环氧树脂/LENR/GNP 复合材料相比,环氧树脂/LENR/GNP-NiZn 铁氧体复合材料表现出优异的导电性。有趣的是,在存在 4%wt NiZn 铁氧体、0.4%wt GNP 和 GNP-NiZn 铁氧体的各种混合组合的情况下,所有纳米复合材料都从绝缘性能转变为半导体性能。结果表明,在加入 NiZn 铁氧体后,纳米复合材料内的磁相互作用增强。这种增强的相互作用可归因于饱和磁化强度 (MS)、剩磁磁化强度 (MR) 和环氧树脂基质内的磁性颗粒组成之间的正比关系。虽然 Fourier-
1.已分级材料的体积小于 250 立方码。2.所有挖方高度均小于 5 英尺。3.所有填方高度均小于 3 英尺。4.土壤扰动面积小于 10,000 平方英尺。5.未产生由主任确定的潜在不稳定斜坡或易受侵蚀的区域。6.分级活动不会侵占化粪池污水处理区。7.排水不会直接流入化粪池污水处理区。8.填料不用于支撑结构改进,包括平面混凝土、车道、道路和建筑物。9.平整活动不会改变先前放置的侵蚀控制材料或排水设施。
硅藻土、26 – 28 海泡石、29 凹凸棒石 30,31 和膨胀珍珠岩 32,33 也被用作支撑基质。膨润土具有多层结构,是一种常见的工业粘土,例如蒙脱石族粘土矿物。膨润土因其良好的物理和化学性质,被广泛用作功能填料、粘结剂、触变剂和催化剂。此外,膨润土具有良好的化学和热稳定性、优异的吸附特性和低廉的价格,使其适合于合成形状稳定的复合 PCM。在本文中,通过真空浸渍法制备了一种由 LA/Na-bentonite-1 制成的新型复合 PCM,它具有高潜热存储能力和适合节能系统的相变温度。以天然膨润土和 LA 为支撑材料