摘要。在金属材料的定向能量沉积 (DED) 工艺中,线激光增材制造 (WLAM) 的特点是使用激光束熔化金属线并产生焊珠。重叠焊珠的连续沉积产生体积以获得零件。因此,控制焊珠的几何形状对于增材制造工艺至关重要。一些研究工作已经研究了这些几何形状以及主要制造参数对其尺寸的影响,但很少有研究进料方向或线角度的影响。此外,所有关于线角度的研究都是在横向进料和恒定激光方向下进行的。本文重点研究了同轴线进料的沉积头方向对焊珠几何形状的影响,其中有 3 束激光。以相对于水平基板的不同方向进行实验,并使用光学仪器测量外部轮廓,以提取平均轮廓和特征尺寸。结果表明,头部绕其轴线旋转和横向倾斜会影响焊珠的高度、宽度和不对称性。
8:40 主题演讲:从孔隙到脆性阶段:先进制造中失效的关键途径 N. Nudelis、Z. Mohamed、C. Obergfell、S. Rotzsche、P. Mayr
大多数传统制造技术都基于减材技术。因此,AM 可以被视为一种非传统方法,因为零件将通过在后续工艺中添加材料来生产。AM 中的一般技术是逐层构建零件,其由其原始计算机辅助设计 (CAD) 文件预先确定。当前的 AM 技术主要可分为七个工艺,如图 1 所示。简要介绍每个工艺的相关技术。光聚合槽 (VPP) 的工作原理是固化感光树脂以构建最终的固体几何形状。粉末床熔合 (PBF) 利用最初以床形式熔化的固体颗粒,并通过外部能量源 (激光/电子束) 融合在一起以构建最终的固体几何形状。定向能量沉积 (DED) 技术利用将原料材料导向能量源,同时在多个构建平面中移动能量源和材料进料机构。材料挤出 (ME) 工艺在喷嘴处熔化原料材料,同时将其挤出以生产固体零件。材料喷射 (MJ) 工艺通过使用喷嘴以液滴形式喷射构建材料来工作。液滴将通过特定机制(蒸发/凝结)转化为固体材料。同样,粘合剂喷射 (BJ) 的工作原理是将液体粘合剂材料喷射到粉末床上,从而在粉末颗粒之间产生粘合作用,以构建固体几何形状。与喷射技术相反,直接写入 (DW) 工艺直接以液体或气体的形式释放构建材料,并将其凝固在构建基底上以创建所需的几何形状 [2]。最后,薄板层压 (SL) 的工作原理是将两张预成型或初始形状的薄板固态焊接 [2]。在这里,我们不讨论此类 AM 技术的具体操作原理和深入细节,因为这超出了我们的范围。我们建议读者参考其他地方的参考资料以获取有关 AM 流程的详细信息[3]。
金属增材制造的计算过程建模在最近引起了广泛的研究关注。许多过程模型的基础是 AM 过程中的瞬态热响应。由于 AM 中热条件的沉积尺度建模计算成本高昂,因此文献中通常采用空间和时间简化,例如模拟整个层或多个层的沉积,以及延长激光曝光时间。虽然这些简化有利于降低计算成本,但本文逐一报告了这些简化对温度历史准确性的影响。在本文中,首先根据空间和时间域中的假设,将现有文献中的简化分类到归一化简化空间中。随后,使用数值示例研究所有类型的简化,并与高保真参考模型进行比较。建立了每个简化所需的数值离散化,从而可以公平地比较计算时间。对不同建模简化方法是否适合捕捉热历史进行了整体分析,为建立热 AM 模型时简化方法的适用性提供了指导。关键词:增材制造、热建模、简化、激光粉末床熔合
电子束粉末床熔合 (E-PBF) 是一种用于金属零件增材制造的极具吸引力的技术。然而,工艺改进需要精确控制电子束传递给粉末的能量。在这里,我们使用可调谐二极管激光吸收光谱 (TD-LAS) 来测量 E-PBF 期间蒸发的钛原子的速度分布函数。激光二极管发射的窄光谱范围允许对蒸发原子进行高分辨率吸收分布分析,从而准确确定它们在熔化过程中的多普勒展宽、密度和温度。获得的蒸汽温度表明熔池表面相对于钛的低压 (0.1 Pa) 沸点过热,表明蒸发发生在非平衡条件下。我们表征了线性能量密度对钛蒸发的影响,发现它与饱和蒸汽压一致。我们对蒸汽特性的表征为熔池模拟提供了可靠的输入。此外,可进一步利用TD-LAS来防止低浓度合金元素的蒸发,从而防止打印部件出现缺陷。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
引用:Dutt Ganguly。(2025 年)。增材制造技术在高性能应用的精密机械设计和开发中的集成。机械设计杂志 (JMD),2(1),1–7。摘要链接:https://iaeme.com/Home/article_id/JMD_02_01_001 文章链接:https://iaeme.com/MasterAdmin/Journal_uploads/JMD/VOLUME_2_ISSUE_1/JMD_02_01_001.pdf
摘要。增材制造不仅在制造业,而且在消费市场也越来越受欢迎,因为它提供了一个全新的机遇世界,首先是几何约束的缺失,以及由于减材制造中典型的材料去除而产生的浪费的减少。此外,它能够增强精益制造的目标,即减少对客户没有任何价值的活动。然而,由于缺乏一致的质量,其广泛的应用受到威胁。因此,有必要进一步研究影响 3D 打印产品的缺陷并提出新的控制方法。本文建议使用一种低成本、轻便、便携的设备作为扫描仪,以快速获取 3D 打印产品的数据并将其与原始模型进行比较。
由于缺乏全面的数据集和缺陷类型的多样性,自动检测增材制造的 Ti6Al4V 材料中的微观结构缺陷面临巨大挑战。本研究介绍了一种应对这些挑战的新方法,即开发专门针对扫描电子显微镜 (SEM) 图像的微观结构缺陷数据集 (MDD)。我们使用此数据集训练和评估了多个 YOLOv8 模型(YOLOv8n、YOLOv8s、YOLOv8m、YOLOv8l 和 YOLOv8x),以评估它们在检测各种缺陷方面的有效性。主要结果表明,YOLOv8m 在精度和召回率之间实现了平衡,使其适用于可靠地识别各种缺陷类型中的缺陷。另一方面,YOLOv8s 在效率和速度方面表现出色,尤其是在检测“孔隙”缺陷方面。该研究还强调了 YOLOv8n 在检测特定缺陷类型方面的局限性以及与 YOLOv8l 和 YOLOv8x 相关的计算挑战。我们的方法和发现有助于科学地理解增材制造中的自动缺陷检测。MDD 的开发和 YOLOv8 模型的比较评估通过提供检测微结构缺陷的强大框架来推进知识水平。未来的研究应侧重于扩展数据集和探索先进的 AI 技术,以提高检测准确性和模型泛化能力。
1.2. 工艺控制优化 通过选择合适的 AM 方法并优化所用 AM 方法的工艺参数,可以实现质量保证改进。最简单的方法是改变次优工艺类型和工艺参数(包括所选材料)的组合,并反复评估质量,直到达到令人满意的质量。这是一种成本高昂且耗时的方法。但是,操作员可能会在一定操作期后获得足够的经验来减少这些迭代。此方法的准确性和速度还取决于评估技术的准确性;否则,操作员将获得相对不正确的经验。 AM 工艺的工艺参数优化可以利用分析性破坏性测试 (DT) 和/或功能性无损检测 (NDT) 方法。X 射线计算机断层扫描 (X 射线 CT) 技术属于 NDT 方法。文献中报道了材料挤压和喷射工艺的 AM 样品的 DT(拉伸试验)和 NDT(X 射线和超声波)数据之间的相关性。发现相关性是线性的[11],[12]。