目的:本文全面回顾了使用金属、合金和陶瓷粉末制造产品的增材和混合技术的文献。设计/方法/方法:对传统粉末工程技术进行了广泛的文献研究。通过使用知识工程方法,指出了各个技术的发展前景。结果:作为先进数字化生产 (ADP) 技术,使用金属、合金和陶瓷粉末制造产品的增材和混合技术分别位于“宽阔的橡树”和“根深蒂固的矮山松”技术树状矩阵的四分之二。这证明了它们具有最大的潜力和吸引力,以及它们在这方面的充分利用吸引力或巨大的发展机会。原创性/价值:根据增强的整体工业 4.0 模型,许多材料加工技术,其中包括使用金属、合金和陶瓷粉末制造产品的增材和混合技术,在产品制造技术中变得非常重要。它们不仅是粉末工程的重要组成部分,也是工业 4.0 概念下制造业发展的重要组成部分。关键词:粉末工程、粉末产品制造、粉末混合技术、粉末增材制造技术、技术潜力和吸引力的树状矩阵、整体增强型工业 4.0 模型对本文的引用应按以下方式给出:LA Dobrzański、LB Dobrzański、AD Dobrzańska-Danikiewicz,使用金属、合金和陶瓷粉末制造产品的增材和混合技术,材料科学与工程档案 102/2 (2020) 59-85。DOI:https://doi.org/10.5604/01.3001.0014.1525
[15] Watanabe Tomonori等人:低温工程39,553(2004)。[16] Iimi Akira等人:低温工程42,42(2007)。[17] A.P.Malozemoff和Y. Yamada:超导100年,第11章“第二代HTS Wire”,P689(CRC出版社,2011年)。和Izumi Teruro,Yanagi Nagato:血浆和核融合杂志93,222(2017)。大量的制造方法,包括兔子底物,mod(化学溶液方法)和真空蒸发方法。 [18] http:// www。istec。或。JP/Tape-Wire/Labo-Tape-Wire。html,使用PLD方法和MOD方法(化学溶液方法)的金属棒的高性质。[19] T. Haugan等。,自然430,867(2004)。[20] Y. Yamada等。,应用。物理。Lett。 87,132502(2005)。 [21] H. Tobita等。 ,超级条件。 SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Lett。87,132502(2005)。[21] H. Tobita等。,超级条件。SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。SCI。技术。25,062002(2012)。[22] Matsumoto Kaname:应用物理77,19(2008)。[23] Yamada Shigeru:应用物理93,206(2024)。[24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。[25] Miyata Noboru:材料37,361(1988)。[26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。,科学。Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Rep。11,8176(2021)。[28] R. Hiwatari等。,血浆融合res。14,1305047(2019)。[29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。[30] D. uglietti,超越。SCI。 技术。 32,053001(2019)。SCI。技术。32,053001(2019)。
产品可能具有或可能具有危险性。买方应从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确运输、处理和储存程序,并应遵守与产品的处理、使用、储存、分销和处置以及接触有关的所有适用政府法律、法规和标准。买方还应采取一切必要措施,充分告知、警告并让可能处理或接触产品的员工、代理商、直接和间接客户和承包商了解与产品有关的所有危害和正确安全处理、使用、储存、运输和处置及接触产品的程序,以及可能处理、运输或储存产品的容器或设备。
各层。桶的底部是透明的,光源可以从下方照射悬浮液。构建平台安装在轴上,在 3D 打印过程中上下移动。创新的双桶系统提高了清洁材料在层间和层内切换的速度、准确性和有效性,而全自动清洁步骤避免了材料更换期间的交叉污染。使用的浆料很少,不需要材料回收操作或泵送系统来保持浆料循环,在成本和资源效率方面具有吸引力。旋转平台组件具有巨大的创新潜力。可以使用独立编写的定制软件将桶切换到其他系统,从而为客户开发和研究提供更多机会。复合材料生产的一个重要步骤是成功地对选定的粉末进行共处理和共烧结。将不同类别的材料烧结成一个组件的开发旨在匹配不同材料的收缩行为以制造功能组件 [3]。 Lithoz 正在研究如何确保多材料部件共烧结成功。各种部件的收缩行为由调整浆料中的粉末分数以及调整粒度分布或形状决定。
摘要:“量子材料”是指其性质“无法用半经典粒子和低级量子力学来描述”的材料,即晶格、电荷、自旋和轨道自由度紧密交织在一起的材料。尽管它们具有有趣而奇特的特性,但总体而言,它们似乎远离微系统的世界,即微纳集成设备,包括电子、光学、机械和生物组件。关于铁性材料,即具有铁磁和/或铁电序的功能材料,可能与其他自由度(如晶格变形和原子畸变)耦合,我们在这里讨论一个基本问题:“我们如何弥合专注于量子材料和微系统的基础学术研究之间的差距?”本文从半导体的成功故事出发,旨在设计一个路线图,以开发基于铁性量子材料的非常规计算的新技术平台。通过描述 GeTe 这一典型案例(新一类材料(铁电 Rashba 半导体)的父化合物),我们概述了如何通过从微观建模到设备应用的研究渠道,实现学术部门与工业部门之间的有效整合,将好奇心驱动的发现提升到 CMOS 兼容技术的水平。
通过每年一次的征集,最多将选出七位企业家,他们将在美国能源部先进制造办公室和田纳西河谷管理局的财政支持下,将他们的想法转化为能源、先进制造和综合电网公司。创新者将获得奖学金,包括长达两年的个人生活津贴、福利和旅行津贴,以及用于 ORNL 合作研究和开发的大量资金。
气体传感器为多个新市场打开了大门。气体传感器越来越多地融入物联网生态系统,用于监测室内和室外的空气质量——例如可穿戴设备、智慧城市项目、用于污染测绘的传感器网络、智能家居电子产品和汽车技术。利用先进气体传感技术的另一个关键趋势是呼吸分析,旨在通过检测呼出气体中的生物标志物进行非侵入性诊断。此外,人类和机器人辅助微创手术导管中的压力传感器需要为外科医生提供触觉反馈。微型超声波传感器为微创医学成像开辟了可能性。然而,要进入大脑和体内较小的动脉,需要进一步微型化,这对目前的压力传感器技术提出了挑战。
曲折。为了衡量范德华材料中摩擦的各种贡献,研究人员制作了几次 - 直径磁盘(滑块),并将其拖到由相同或相似材料制成的表面上。在滑块的蜂窝晶格(蓝色点)和基础表面(黄点)之间的不匹配来自其不同的旋转方向以及两者由不同元素制成时晶格间距的差异。组合创建了一个Moiré超级晶格,在该超晶格中,模式定期出现在注册表中。完全moiré瓷砖中原子的摩擦效应(圆的内部)取消。在滑块的边缘,瓷砖不完整(粉红色),因此取消是不完美的,并且是实质性的摩擦力结果。信用:Y. Li等。[1]