摘要:这项研究的目的是评估利用BW(Buttress Wall)来控制越南胶质土壤条件下膜片壁的偏转的影响。使用在特定项目期间密切监视的数据评估了碰撞层的物理和机械性能,这是利用硬化土壤模型的3D数值模拟的验证。分析结果与现场监视数据非常匹配,该数据测试了模拟模型的准确性。这构成了进一步研究BW壁的维度参数的基础,包括它们之间的长度,厚度和间距。从参数研究中获得的结果表明,在BW壁之间改变壁的长度和间距显着限制了隔膜壁的变化,而厚度的变化具有可忽略的效果。通过3D数值模拟,已经建立了最大壁偏转与参数(例如壁长和BW壁之间的间距)之间的线性关系。
根据薄翼型理论,翼型近似于隧道中心四分之一弦点(x=0,y=0)处的单个涡流。风洞壁由距离为 h 且符号交替的无限垂直涡流行模拟,位于真实涡流上方和下方(见图 4)。在隧道中心线上的位置 x 处引起的水平速度相互抵消,但垂直分量相加。在涡流位置处,引起的垂直分量为零并改变符号。在封闭的隧道中,流动的曲率必须使得没有气流穿过隧道壁。
为了实现航空工业的精确气动声学测量,对主要用于气动测试的低速风洞进行了改造,以提供更低的背景噪声环境。根据风洞不同位置的单个麦克风的数据和测试段内的麦克风相控阵测量结果,确定了主要噪声源,并实施了可行的替代方案来降低背景噪声,例如在驱动系统上游安装新的经过声学处理的角叶片和侧壁衬里。还研究了测试段的声学透明概念,结果显示风洞的进一步改进很有希望。给出了风洞不同位置的单个麦克风测量结果以及测试段内波束形成阵列的声压级结果。改进前后的背景噪声测量证实,气动声学测试的能力显著提高,测试段内的噪声降低了 5 dB。
在超音速飞行期间,冷却膜可以保护光窗免受热湍流边界层的影响。必须在冷却效率和产生的光学扭曲之间达到平衡。光畸变是由于密度差异和导致连贯流量结构的不稳定性而导致的。作为巴黎圣母院与新墨西哥州立大学之间的合作研究项目的一部分,进行了壁模型的大型模拟,对两个动荡的边界层流在带有冷却膜的光学窗口上的两个湍流边界层流。考虑了三种不同的冷却膜气体(空气,二氧化碳和氦气)。模拟的条件与巴黎圣母院SBR-50超音速风洞中的实验相匹配。外流与冷却膜速度和密度之间的差异会影响混合层的湍流和压力扭矩涡度产生。将冷却膜物种浓度和光路失真的根平方与巴黎圣母院的测量进行了比较。对物种不匹配的病例的基于密度的正交分解揭示了有助于光学扭曲的连贯结构。
视网膜静脉闭塞(RVO)是第二大最常见的视网膜血管病变,是造成Unilat eral视觉障碍和失明的重要原因。1,2基于静脉病变的位置,RVOS分为中央(CRVO)和分支(BRVO)视网膜静脉闭塞。CRVO中的闭塞位于lamina cribrosa的中央视网膜静脉中和/或其后部,而在Brvo中,闭塞发生在中央视网膜中心静脉的任何分支中,尤其是在动静脉交叉处。几种系统性和眼部风险因素已被认为是RVO发展的有效贡献者。经典的危险因素包括高龄,高血压,高脂血症和糖尿病(DM)。3–8此外,避孕药,青光眼和Thrombo Philic危险因素的吸烟,升高的体重指数(BMI),黑种族,口服摄入与RVO有关。3–10
获取NIH CONSONS ID(如果您还没有),并确认您的Commons帐户已更新以反映您当前的机构。对于LRP的特定NIH Commons ID要求,请阅读LRP网站上的LRP Commons概述文档。阅读所有资格信息,并确保您有资格获得NIH LRP。阅读六个校外LRP子类别中的每个信息,并确定哪一个最适合您的研究。阅读研究所和中心(IC)任务和优先事项声明,并联系列出的计划官,以讨论您对NIH LRP的研究和适用性。选择最适合您的研究兴趣的1-2 IC。与您的导师/研究主管谈谈您的LRP申请,并要求其NIH Commons ID。您的导师将被要求提交参考书。如果您获得奖励,将要求您的研究主管验证您的季度服务义务。确定您的裁判。至少联系3个,但不超过5个人,并要求他们代表您提交参考书。如果您有导师,则需要您的导师成为您的裁判之一。确定并联系您机构的业务官员,并要求其NIH Commons ID。商业官员有权证明您的受保护的研究时间并确认您作为美国公民的地位。草稿您的研究文件。您将作为申请的一部分提交的文档的详细说明可以在“教学指南的研究信息”部分中找到。确定您的研究资金来源。当LRP申请于9月1日在Assist打开时,请登录,完成并在11月21日之前提交您的LRP申请。
涉及生成科学数据的壁内NIH研究受到2023年NIH数据管理和共享政策的约束。该政策要求提交数据管理和共享计划,并遵守批准的计划。对于将在2023年1月25日或之后进行的所有正在进行的与Zia(且不包含在临床方案中)相关的壁内研究,研究人员/项目负责人必须在2023年1月25日之前提交DMS计划。在该日期之后,可以全年提交新的和修订的计划,但必须作为年度报告过程的一部分批准并批准。对于与2023年1月25日或之后提交的IC初步科学审查相关的研究,必须与其他协议材料一起提交DMS计划。对于先前的协议,必须将DMS计划作为四年审查的一部分提交。如果拟议的研究将生成大规模的基因组数据,则基因组数据共享策略也适用,应在DMS计划中解决。DMS计划结合了2015年壁内人类数据共享政策所需的数据共享计划要素。壁内DMS计划模板与NIH为校外研究社区开发的建议模板一致,可在此处获得。有关DMS策略的其他指南,请访问sharing.nih.gov和OIR资源书。有关NIH共享政策,包括新数据管理和共享政策,请联系sharing@nih.gov。NIH图书馆提供一对一和小组咨询,以及课程和其他服务。DMP工具是加利福尼亚大学的一项服务,提供了其他指导和示例语言。提供了一些DMP工具示例答案。仅提供这些示例,调查人员使用此语言是可选的。
董事办公室(OD)尼克·安德拉德(Nick Andrade)| nick.andrade@nih.gov |培训专家,数据科学策略办公室伊夫林·博茨威| botchwaye@od.nih.gov |数据科学策略办公室计划分析师Philip Chiang | chiangpt@od.nih.gov |校内研究办公室布莱恩特·詹(Bryant Jen)办公室专家| jenb2@od.nih.gov |室内研究办公室Nitin Kumar办公室专业经理| kumarn6@od.nih.gov |壁内研究办公室基础设施系统官员Etan Kuperberg | etan.kuperberg@nih.gov |卫生科学政策分析师,校外研究办公室Alison Lin博士| alison.lin@nih.gov |培训,劳动力倡议和社区参与(两次)部门负责人,数据科学办公室策略Steevenson Nelson博士| nelsons2@od.nih.gov |程序总监Rashod Qaim | qaimra@od.nih.gov |机器学习工程师,执行办公室卡洛斯·桑切斯(Carlos Sanchez)| sanchezc3@od.nih.gov |执行办公室的计划官克里斯·索尔兹(Chris Sowards)| chris.sowards@nih.gov |信息系统安全官,信息技术办公室Ylang Tsou | tsouyh@od.nih.gov |壁内研究办公室荣誉荣誉办公室| zhouh5@od.nih.gov |计划官员,执行办公室
通常称为5CB,4-甲氧-4'-戊苯基是具有化学式C18H19N的列液晶体。它首先由乔治·威廉·格雷(George William Gray),肯·哈里森(Ken Harrison)和J.A.合成。纳什(Div> Nash)于1972年在赫尔大学(University of Hull),当时是氰基苯基的第一位成员。[1] [2] 5CB分子在22.5°C下从晶体到列相的相变长20Å,并在35.0°C下从列中到同性恋态。尽管由于其低过渡温度向各向同性及其狭窄的列相范围而不适合LCD,但它仍然是基础研究中最常用的列表之一。这是阳性介电各向异性材料的参考材料之一,并且可用的物理数据量最多。碳纳米管是由滚动石墨烯片制成的管状结构。作为许多纳米颗粒,对它们进行了研究,以便在其他材料中使用和插入以改善其电气[3-5]或生物学[6]特性,但也作为光电和磁化器件中高级材料的掺杂剂[7-12]。,为了适当使用,必须将它们作为单个颗粒作为单个颗粒进行研究,而不是像它们表现出完全不同的行为的大部分。许多
单壁碳纳米管于 1991 年被“正式”发现,但有传闻表明这些结构的出现可能早于正式发现近 40 年。纳米管是纳米尺寸的管状结构。碳纳米管 (CNT) 之所以具有吸引力,是因为它们兼具机械强度、高热导率和可调节的电气性能。这些特性使该技术适用于从混凝土和复合材料到电池存储、汽车、电子、医疗和国防市场等各种应用。纳米技术的性能优势广为人知,但成本和可用性问题阻碍了其广泛采用。CHASM Advanced Materials 希望改变这种模式。CHASM Advanced Materials 的故事始于 Chasm Technologies,这是一家由 Dave Arthur 和 Bob Praino 于 2005 年创立的咨询公司。在共同创办 Chasm Technologies 后不久,Dave Arthur 离开公司,担任 SouthWest NanoTechnologies (SWeNT) 的首席执行官,SWeNT 是 Chasm 的首批客户之一。 SWeNT 成为电子和复合材料应用领域碳纳米管材料的领先生产商,并于 2009 年与 Chasm Technologies 正式建立战略联盟。2015 年,Chasm Technologies 同意收购 SWeNT,Dave Arthur 成为新成立的 CHASM Advanced Materials 的首席执行官。CHASM 的总部和应用开发中心位于马萨诸塞州坎顿一座占地 10,000 平方英尺的工厂内。碳纳米管面临的挑战之一是规模。收购 SWeNT 后,SWeNT 在俄克拉荷马州诺曼拥有一座占地 18,000 平方英尺的先进制造工厂,该工厂经过特殊设计和配置,可生产高纯度碳纳米管。作为 CHASM 增长和创新战略的一部分,该工厂正在实施世界上最大的 CNT 生产平台,年生产能力为 1500 公吨。 CHASM 称该平台是大规模生产高质量 CNT 添加剂最具可扩展性、成本效益和可持续性的方法。这一努力