摘要:这项研究的目的是评估利用BW(Buttress Wall)来控制越南胶质土壤条件下膜片壁的偏转的影响。使用在特定项目期间密切监视的数据评估了碰撞层的物理和机械性能,这是利用硬化土壤模型的3D数值模拟的验证。分析结果与现场监视数据非常匹配,该数据测试了模拟模型的准确性。这构成了进一步研究BW壁的维度参数的基础,包括它们之间的长度,厚度和间距。从参数研究中获得的结果表明,在BW壁之间改变壁的长度和间距显着限制了隔膜壁的变化,而厚度的变化具有可忽略的效果。通过3D数值模拟,已经建立了最大壁偏转与参数(例如壁长和BW壁之间的间距)之间的线性关系。
单壁碳纳米管 (SWCNT) 具有可调的光电特性和高载流子迁移率,是下一代能量收集技术(包括热电发电机)的理想材料。控制这些独特的 1D 纳米材料中的费米能级通常由 SWCNT 与电子或空穴接受物质之间的电荷转移相互作用实现。掺杂 SWCNT 网络的传统方法通常涉及将分子氧化还原掺杂剂物质扩散到固态薄膜中,但溶液相掺杂可能为载流子传输、可扩展性和稳定性提供新途径和/或好处。在这里,我们开发了使用 p 型电荷转移掺杂剂 F 4 TCNQ 对聚合物包裹的高浓缩半导体 SWCNT 进行溶液相掺杂的方法。这使得掺杂的 SWCNT 墨水可以铸成薄膜,而无需额外的沉积后掺杂处理。我们证明在 SWCNT 分散过程的不同阶段引入掺杂剂会影响最终的热电性能,并观察到掺杂剂改变了聚合物对半导体和金属 SWCNT 的选择性。与致密的半导体聚合物薄膜相比,溶液相掺杂通常会导致形态破坏和 TE 性能比固态掺杂更差,而溶液掺杂的 s-SWCNT 薄膜的性能与固态掺杂的薄膜相似。有趣的是,我们的结果还表明,溶液相 F 4 TCNQ 掺杂会导致固态薄膜中完全电离和二聚化的 F 4 TCNQ 阴离子,而在沉积后掺杂 F 4 TCNQ 的薄膜中则不会观察到这种情况。我们的研究结果为将溶液相掺杂应用于可能需要高通量沉积技术的广泛高性能基于 SWCNT 的热电材料和设备提供了一个框架。
Harutoshi Yamada、Teruki Tsurimoto(筑波大学纯粹与应用科学研究生院)、Sirawit Pruksawan 和 Naito(筑波大学纯粹与应用科学研究生院、国家材料科学研究所)
1. 参加者应具备的资格 (1) 参加者不得有《预算会计审计法》第70条规定的情况。此外,未成年人、被监护人或接受协助的人,即使已经取得订立合同所必需的同意,也属于同一条款内有特殊事由的情况。 (2)不属于《预算会计审计法》第七十一条规定情形的。 (3)2022、2023、2024年度防卫省竞争性投标资格(各省厅统一资格)“提供服务等”类别中被评为D级以上,且具备参加关东、甲信越地区竞争性投标资格的,或者,如果其不具备参加竞争性投标的资格,但在投标之日前已经通过竞争性投标资格审查,并在竞争性投标资格名单中登记,并被认定具备参加竞争性投标资格的。 (4)该人目前不属于防卫省长官房长官、防卫政策局局长、采购技术后勤局局长(以下称为“防卫省暂停权限”)或海上自卫队参谋长根据“设备等及服务采购暂停提名等指南”采取的暂停提名措施的对象。 (5) 与前项规定暂停指定对象者有资本或人事关系,且无意与国防部签订与其同类物品买卖、制造或承包服务契约者。 (6)目前处于暂停提名状态的人员原则上不允许进行分包。但有关部会暂停提名权机关认定确有不可避免的情况时,不在此限。
建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术
根据薄翼型理论,翼型近似于隧道中心四分之一弦点(x=0,y=0)处的单个涡流。风洞壁由距离为 h 且符号交替的无限垂直涡流行模拟,位于真实涡流上方和下方(见图 4)。在隧道中心线上的位置 x 处引起的水平速度相互抵消,但垂直分量相加。在涡流位置处,引起的垂直分量为零并改变符号。在封闭的隧道中,流动的曲率必须使得没有气流穿过隧道壁。
为了实现航空工业的精确气动声学测量,对主要用于气动测试的低速风洞进行了改造,以提供更低的背景噪声环境。根据风洞不同位置的单个麦克风的数据和测试段内的麦克风相控阵测量结果,确定了主要噪声源,并实施了可行的替代方案来降低背景噪声,例如在驱动系统上游安装新的经过声学处理的角叶片和侧壁衬里。还研究了测试段的声学透明概念,结果显示风洞的进一步改进很有希望。给出了风洞不同位置的单个麦克风测量结果以及测试段内波束形成阵列的声压级结果。改进前后的背景噪声测量证实,气动声学测试的能力显著提高,测试段内的噪声降低了 5 dB。
在超音速飞行期间,冷却膜可以保护光窗免受热湍流边界层的影响。必须在冷却效率和产生的光学扭曲之间达到平衡。光畸变是由于密度差异和导致连贯流量结构的不稳定性而导致的。作为巴黎圣母院与新墨西哥州立大学之间的合作研究项目的一部分,进行了壁模型的大型模拟,对两个动荡的边界层流在带有冷却膜的光学窗口上的两个湍流边界层流。考虑了三种不同的冷却膜气体(空气,二氧化碳和氦气)。模拟的条件与巴黎圣母院SBR-50超音速风洞中的实验相匹配。外流与冷却膜速度和密度之间的差异会影响混合层的湍流和压力扭矩涡度产生。将冷却膜物种浓度和光路失真的根平方与巴黎圣母院的测量进行了比较。对物种不匹配的病例的基于密度的正交分解揭示了有助于光学扭曲的连贯结构。
视网膜静脉闭塞(RVO)是第二大最常见的视网膜血管病变,是造成Unilat eral视觉障碍和失明的重要原因。1,2基于静脉病变的位置,RVOS分为中央(CRVO)和分支(BRVO)视网膜静脉闭塞。CRVO中的闭塞位于lamina cribrosa的中央视网膜静脉中和/或其后部,而在Brvo中,闭塞发生在中央视网膜中心静脉的任何分支中,尤其是在动静脉交叉处。几种系统性和眼部风险因素已被认为是RVO发展的有效贡献者。经典的危险因素包括高龄,高血压,高脂血症和糖尿病(DM)。3–8此外,避孕药,青光眼和Thrombo Philic危险因素的吸烟,升高的体重指数(BMI),黑种族,口服摄入与RVO有关。3–10
获取NIH CONSONS ID(如果您还没有),并确认您的Commons帐户已更新以反映您当前的机构。对于LRP的特定NIH Commons ID要求,请阅读LRP网站上的LRP Commons概述文档。阅读所有资格信息,并确保您有资格获得NIH LRP。阅读六个校外LRP子类别中的每个信息,并确定哪一个最适合您的研究。阅读研究所和中心(IC)任务和优先事项声明,并联系列出的计划官,以讨论您对NIH LRP的研究和适用性。选择最适合您的研究兴趣的1-2 IC。与您的导师/研究主管谈谈您的LRP申请,并要求其NIH Commons ID。您的导师将被要求提交参考书。如果您获得奖励,将要求您的研究主管验证您的季度服务义务。确定您的裁判。至少联系3个,但不超过5个人,并要求他们代表您提交参考书。如果您有导师,则需要您的导师成为您的裁判之一。确定并联系您机构的业务官员,并要求其NIH Commons ID。商业官员有权证明您的受保护的研究时间并确认您作为美国公民的地位。草稿您的研究文件。您将作为申请的一部分提交的文档的详细说明可以在“教学指南的研究信息”部分中找到。确定您的研究资金来源。当LRP申请于9月1日在Assist打开时,请登录,完成并在11月21日之前提交您的LRP申请。