最常用的潜艇探测和定位手段之一是定向频率分析和记录 (DIFAR) 声纳浮标系统。这是一种被动系统,通过接收潜艇发射的声学信号、探测和定位潜艇来工作。近年来,DIFAR 声纳浮标还被用于追踪鲸鱼的迁徙并记录它们发出的声音( McDonald,2004;Miller,2012;Greene Jr. 等,2004)。一般而言,DIFAR 声纳浮标配备有由五个水听器组成的水声天线,这些水听器由交叉的梯度水听器对和一个附加的中央水听器组成(Mallet,1975;Salamon,2004)。类似的没有中央水听器的天线系统也是已知的(Stover,1969;Salamon 等人,2000)。在本文中,作者将证明这两种解决方案都是正确的,并且在很宽的信噪比范围内提供类似的方位精度水平。与任何被动或主动声学系统一样,方位精度受噪声影响,其中噪声在声纳浮标的工作频率范围内(10 Hz 至 3 kHz)特别高(Salamon,2004;2006;Marszal 等人,2005)。了解
- SPAS 处理特殊用途声纳浮标、模拟声纳浮标(被动和主动)和新型数字声纳浮标。 - 声学性能预测计算,提供射线追踪和最大检测范围(MDR 和 PDR)。 - 通过窄带分析、宽带分析、瞬态、恶魔、双恶魔、扫描带分析和交互式 ACINT 数据库进行检测和接触分类。 - 以不同格式显示的声学信息:ALI、LFI、BFI、ARI、DRI、BRI。 - 与部署的声纳浮标相关的战术信息显示在地理图上,允许使用定位辅助工具: - 被动声纳浮标的能量图 - 主动声纳浮标的多静态图 - 手动交叉固定、LOFIX、HYFIX、CPA 和 Lloyd 镜像工具。 - 自动交叉固定、卡尔曼滤波器、TMA 和 DOP-CPA 工具。 - 根据威胁过滤器自动本地接触警报。 - CSG 和 CFS 命令发射。 - 海量数字存储设备,用于记录任务数据和信号以供飞行后分析。
此外,还开发了准确、精密的短期和长期海浪和天气预报系统。在构件运输和浸没作业之前的一段时间内,该系统能够将预报的浪高精度控制在 10 厘米以内,从而可以在可接受的风险范围内进行浸没作业。隧道构件(TE)在预制场(PC)分批建造。码头淹没后,构件被运输到靠近 PC 场的系泊地点进行装配并等待有利的浸没天气。构件使用两个双体船浮筒浸没,并放置在海床上先前挖出的沟渠中。采用了绷紧系泊配置,以将海浪影响的运动降至最低。锚点由预先安装的板锚创建。由于隧道的总长度和安装深度,使用塔和全站仪的传统测量系统并不适用。因此,开发了新的测量方法,其中包括在浸没操作期间用于定位元件的拉线系统和超短基线 (USBL) 声学系统。使用专门设计的外部定位系统 (EPS) 对受波浪影响的 TE 进行精确定位,并将其放置在预先铺设的砂砾床上。
副项目经理 202-781-3788 07L 物流 - 在役 PSM 副项目经理 202-781-3661 07Q SUBSAFE、FBW 和 DSS 副项目经理 202-781-5184 UWS TR 培训和准备副项目经理 202-781-4376 073 海底技术副项目经理(代理) 202-781-3382 PMS 392 在役潜艇:688、21、22、774 副项目经理 202-781-7456 PMS 394 先进海底系统副项目经理 703- 470-5726 PMS 396 在役战略潜艇副项目经理 202-781-5141 PMS 397 哥伦比亚级潜艇副项目经理202-781-1216 PMS 390 海底特殊任务系统副项目经理 202-781-1662 PMS 401 潜艇声学系统副项目经理 202-781-4139 PMS 404 海底武器副项目经理 202-781-4809 PMS 415 海底防御战系统副项目经理 202-781-0928 PMS 425 潜艇作战与武器控制副项目经理 202-781-2821 PMS 435 电磁系统副项目经理 202-781-5395 PMS 450 弗吉尼亚级副项目经理 619-524-7653 PMS 485 海上监视系统副项目经理 202-781-3501 SUB-SB 潜艇战联邦战术系统项目经理 202-781-4082 海底领域项目整合办公室项目经理 SIB 潜艇工业基地副项目经理 202-781-3953 PMS4XX 新型攻击潜艇副项目经理 207-438-6100 SSN 潜艇维护工程、规划和采购
美国海军在巴哈马群岛海舌南部 (TOTO) 运行的潜艇辐射噪声测量系统已接近使用寿命,需要在 2009 财年之前更换。这项为期四年的项目从 2005 财年开始,将在同一区域安装固定、底部安装、与岸上连接的声学系统,以取代现有的水面舰艇部署的潜艇辐射噪声高增益测量系统。主要系统基础设施安装于 2008 年 4 月至 5 月,声学传感器安装于 2008 年 7 月至 8 月。STAFAC 的初始作战能力 (IOC) 为 2008 年 10 月。机械、系泊和安装 (MMI) 综合项目团队由来自罗德岛州纽波特的海军水下作战中心 (NUWC)、加利福尼亚州波特休尼米的海军设施工程服务中心 (NFESC) 和加利福尼亚州文图拉的声音与海洋技术 (SST) 的人员组成,负责设计、制造 STAFAC 系统的机械部件,并安装整个 STAFAC 系统,包括位于巴哈马安德罗斯岛 AUTEC 的 MMI 和阵列部件。STAFAC 系统的配置如右图所示。STAFAC 水下机械系统包括所有底部安装的遥测和电缆、深海系泊设备以及纳入 AUTEC 陆地和海上站点的相关机械子系统。这些包括海底电力和遥测电缆、电光机械终端;遥测和电力转换接线盒的浅水安装结构;仪器压力容器;
类别0核材料,设施和设备 - 核反应堆,燃气离心机,高强度金属,设备和材料,尤其是为核用途而设计的。类别1材料,化学物质,微生物和毒素 - 保护和检测设备,防弹衣,前体化学物质,毒素,壳体,泵,泵物体,叶轮和转子,病毒,细菌,保护性和检测设备,辐射设备,辐射屏蔽窗口和金属粉末生产设备。类别2材料处理 - 用于铣削的机床,计算机数值控制的机器和组件;反应容器或反应堆,搅拌器,储罐,容器,蒸馏或吸收柱,阀门,多壁管,多封或无密封的泵,十字架,机器人,机器人,振动测试系统,真空泵,化学处理,化学处理和处理设备。类别3电子 - 微波组件,声波设备,高能设备,开关设备,雷管,某些集成电路,光谱仪电子雷管,集成电路,微波电源模块和质谱仪。类别4计算机 - 高性能计算机,相关的电子组件以及其他专门设计的组件,辐射硬化计算机,神经和光学计算机以及相关设备。类别5电信和信息安全性 - 第1部分 - 电信。电信系统,光纤电缆,无线电设备,干扰设备以及遥测设备和遥控设备。第2部分 - 信息安全性(密码学)。加密设备和通信电缆系统。类别6传感器和激光器 - 海洋声学系统,言语,高速摄像头,光学镜和激光器,成像摄像机和磁力计。类别7导航和航空电子学 - 陀螺仪,加速度计,惯性导航系统,飞行控制系统,用于海洋学和水文测量的设备,加密的全球定位系统。第8类海军陆战队 - 潜水车,水下视觉系统,摄影静止相机,远程控制的操纵器,降噪系统和空气独立的电力系统。类别9航空航天和推进 - 航空和海洋燃气轮机发动机,液体火箭推进系统,无人驾驶飞机,混合火箭电动机,导弹,重新进入车辆,无人机,火箭电机,Ramjet Engines,Spacecraft,Spacecraft,Sounding Rockets,声学振动测试设备。
最近在光学和光子学方面取得了突破,导致了非重点设备和材料的显着进步。研究人员已经证明了实现光学隔离的各种方法,包括磁光隔离器,非逆地相位变速器和声学系统。研究表明,可以使用IIII-V-niobate放大器和激光器(De Beeck等,2021)以及氮化硅平台(Yan等,2020)来实现综合波导隔离器。这些设备可实现有效的光学通信和传感应用。此外,研究人员还探索了在硅光子系统中使用微量的,这可以导致紧凑和集成的光子溶液(Shu等,2022; Shen等,2020)。其他研究的重点是开发针对平面波导隔离器的非重粒子材料和设计(Srinivasan&Stadler,2018)。此外,研究人员还研究了在不使用磁光材料的情况下实现光学分离的各种方法。这些方法包括合成磁力和储层工程(Fang等,2017),电动驱动的Acousto-Optics(Kittlaus等,2021)以及声子介导的光子自动镇分布(Sohn等,2021)。总体而言,这些非重点设备和材料中的这些进展对用于光学通信,传感和其他应用的紧凑,集成光子系统的开发具有重要意义。最近的一项研究证明了用于基于芯片的激光雷达技术的非重点脉冲路由器的发展[1]。这项创新基于光学隔离器和循环器的先前研究,这些创新已被证明是通过参数放大[2]和KERR效应的固有非交流性[3]来实现的。其他研究探索了微孔子来创建隔离器和循环器[4],以及在对称微腔中的可重构对称性激光[5]。研究人员还研究了用于频率梳子产生和低功率启动的高Q氮微孔子[6,7]。已经报道了磷化磷化物非线性光子学的综合凝固膜的发展,以及基于触觉的Kerr非线性综合光子学[8,9]。还研究了高Q硅碳化物微孔子中的光学KERR非线性,以及硅碳化物纳米光子学中的光学参数振荡[10,11]。进一步的研究集中于具有高第二谐波产生效率的定期粘性薄膜硅锂微孔谐振器[12]。单片硅锂光子电路已为Kerr频率梳子的产生和调制开发[13]。研究还研究了由于动态互惠性而引起的非线性光学隔离器的局限性[14],以及非线性谐振器中反传播光的对称破坏[15]。已报道了非线性微孔子中自发性手性的实验证明,以及基于氮化硅和非线性光学硅Hydex的新型CMOS兼容平台[16,17]。研究还探索了稀薄的氮化硅同心微孔子中的分散工程和频率梳子的产生[18]。据报道,探测材料吸收和集成光子材料的光学非线性,以及解决硅微孔谐振器设备的热挑战[19,20]。最后,已经证明了镜子对称的片上频率循环,以及由硅芯片上带光子跃迁引起的电动驱动的非转换的非逆向性[21,22]。使用微孔调制器的光学隔离也已经探索[23]。注意:我在试图维护原始含义和上下文的同时解释了文本。但是,为了清楚起见,可能已经省略或改写了一些次要细节。研究人员刘和团队开发了一种大规模生产高质量氮化硅光子电路的方法,以最低的损失率以最低的损失率实现了出色的性能。在他们最近在《自然传播》中的出版物中详细介绍了这一突破。