聚合物的多面应用往往受到其热导率的限制。因此,了解聚合物中的热传输机制至关重要。在这里,我们利用分子层沉积来生长三种混合金属锥(即 alucone、zincone 和 tincone)薄膜,并研究它们的热和声学性能。混合聚合物薄膜的热导率范围为 0.43 至 1.14 W m − 1 K − 1 。利用动力学理论,我们将热导率差异的起源追溯到声速变化,这是由薄膜内的结构无序决定的。改变无序性对体积热容量和振动寿命的影响可以忽略不计。我们的研究结果为提高有机、混合和无机聚合物薄膜的热导率提供了方法。
进行了风洞试验,以表征 RAE 2822 超临界翼型并实施主动流动控制技术。试验在各种亚音速和跨音速马赫数和攻角下进行。沿四分之一弦轴连接到翼型端部的两个称重传感器用于量化作用在翼型上的气动力。跨音速翼型已集成,控制技术已在佛罗里达州立大学 Polysonic 风洞中成功实施。本文介绍了一些初步实验结果,并描述了实施过程中获得的经验教训。油流可视化显示翼型吸力面上存在角涡,下表面存在楔形图案,这表明局部过渡流和湍流区域的组合,没有冲击或冲击非常弱。基准翼型上测量的升力系数远低于基于文献的估计值。这些结果表明,测试的翼型需要修改其纵横比和横截面积以适应设施。基于同流喷射的主动流动控制技术在改善气动性能方面显示出良好的前景。
注意:本问题考察学生对光速和声速差异的理解,帮助他们建立对观察到的现象提供科学解释的能力。它强调了基于自然规律的逻辑推理的重要性。正确答案:学生可以解释光速比声速快。(不接受(1)只提到距离(例如:“雷声传播得更远”);(2)将雷声描述为“回声”或雷声发生在闪电之后,但没有提到光速和声速的差异。)
彩色皮秒声学 (CPA) 和光谱椭圆偏振术 (SE) 相结合,测量沉积在 300 毫米晶圆上的聚合物薄膜树脂的弹性和热弹特性。使用 SE 测量膜厚度和折射率。使用 CPA 根据折射率测量声速和厚度。比较两种厚度可以检查两种方法之间的一致性。然后在 19 ◦ 至 180 ◦C 的不同温度下应用相同的组合。随着样品被加热,厚度和声速都会发生变化。通过分别监测这些贡献,可以推导出声速温度系数 (TCV) 和热膨胀系数。该协议适用于目前微电子工业使用的不同薄膜树脂制成的五种工业样品。杨氏模量在不同树脂之间相差高达 20%。每种树脂的 TCV 都很大,并且从一个树脂到另一个树脂的相差高达 57%。
当声束以反射声音或将其反射回声源的方式撞击物体或传输介质之间的边界区域时,就会产生回声。当声波撞击密度与其传播介质不同的介质时,有时会发生声波反射。当两种介质的密度相差很大,并且声波撞击的角度很大时,就会发生这种情况。这是因为声波在两种不同密度中传播的速度不同。例如,在海水中传播的声波几乎完全在水和空气的边界上反射。海水中的声速大约是空气中的声速的四倍,而水的密度是空气的 800 多倍。因此,几乎所有的声束都会从海面向下反射。
微/纳米结构对热导率的影响是一个具有重大科学意义的课题,对热电技术尤其重要。目前的理解是,结构缺陷主要通过声子散射降低热导率,其中描述热传输时声子色散和声速是固定的,特别是当化学成分不变时。对 PbTe 模型系统进行的实验表明,声速随内部应变的增加而线性减小。这种材料晶格的软化完全解释了晶格热导率的降低,而无需引入额外的声子散射机制。此外,我们表明,高效率 Na 掺杂 PbTe 的热导率降低和随之而来的热电品质因数(zT > 2)的提高主要归因于这种内部应变引起的晶格软化效应。虽然已知非均匀内部应变场会引入声子散射中心,但这项研究表明,内部应变也能平均软化材料晶格,从而改变声速和声子色散。这为控制晶格热导率提供了新途径,超越了声子散射,利用微结构缺陷和内部应变。在实践中,许多工程材料都会表现出软化和散射效应,就像硅中显示的那样。这项研究为能源材料、微电子和纳米级传热领域的热导率研究带来了新的启示。
如今,扫描声学显微镜 (SAM) 已成为电子元件和组件中无损质量评估和缺陷识别的标准手段。航空航天工业中所谓的飞行模型部件就是一个特殊的例子。这些集成到卫星、宇宙飞船或飞机中的部件需要经过大量测试才能达到高可靠性。然而,每次 SAM 测试都需要将部件浸入去离子水中,这可能被视为污染物。在理想情况下,使用的耦合液应该已经是部件标准“生命周期”的一部分,包括制造、测试和筛选。自然的候选者是异丙醇(用于清洁)和氟碳液体,例如 Fluorinert ™ FC-43、Galden ® D02 和 Galden ® HT80(用于按照 MIL-STD-750 和 MIL-STD-883 标准进行密封测试),尽管它们存在已知缺点,例如异丙醇易蒸发且可能危害人体健康。文献中关于使用这些液体作为声耦合液的信息很少。甚至用于理论适用性评估的关键参数,例如声速或衰减常数,也仅部分已知(参见表 1 和表 4 中缺失的文献参考)。对于标准耦合液体水,在 0 °C 至 100 °C 的温度下的声速值是众所周知的 [ 1 ]。对于异丙醇和 FC-43,已经发表了一些研究,并报告了 20°C 时的声速值 [ 2 , 3 ](见表 1)。据我们所知,没有关于 D02 和 HT80 的文献数据。20°C 时无空气蒸馏水的声音衰减为 α /
纳米流体干涉仪 (Mittal Enterprises-NF10) • 纳米流体(如银/金和磁流体等)的表征。 • 评估流体中适度的纳米颗粒浓度以显著增强其性能。 • 预测由于金属纳米颗粒以极低浓度悬浮在聚合物流体中而导致的热导率增强。 • 液体悬浮液中纳米颗粒的声速和压缩性。 • 研究相变并检测/评估纳米流体中的弱和强分子相互作用。 • 确定复合程度并计算此类纳米流体复合物的稳定常数。
Time Delta S 是一款基于传输时间测量法的固定式超声波流量计,利用夹式传感器测量相对清洁的均质液体的流速。由于采用了基于微处理器的电子设备,流量计可以通过前键盘轻松配置为特定应用。Time Delta S 非常适合测量管道直径为 0.50 至 235 英寸的液体流量。系统由转换器和传感器组组成。应用包括可以传输超声波信号的任何流体的流量测量,包括声速未知的流体。流量计是一种紧凑轻巧的仪器,采用最新的电子设备和高速数字信号处理技术(32 位 MPU),性能卓越且操作简便。