焊接对薄型硅太阳能电池造成的损伤以及模块中破裂电池的检测 Andrew M. Gabor、Mike Ralli、Shaun Montminy、Luis Alegria、Chris Bordonaro、Joe Woods、Larry Felton Evergreen Solar, Inc. 138 Bartlett St., Marlborough, MA 01752, 508-597-2317, agabor@evergreensolar.com Max Davis、Brian Atchley、Tyler Williams GreenMountain Engineering 500 Third St, Suite 265, San Francisco, CA 94107 摘要:降低光伏制造成本的需求加上目前多晶硅原料的短缺导致硅片和电池厚度不断减小。工艺、材料和处理设备必须进行调整以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将电线焊接到电池上是变得更具挑战性的步骤之一。电池可能在加工过程中破裂,或者由于加工过程中的损坏导致模块破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 开发了有助于优化工艺、设备和材料的工具,并开发了改进的模块级裂纹检测方法。在本文中,我们描述了一种电池破损强度测试仪,我们将其构建为一种快速反馈和质量控制工具,用于改进和监控焊接过程。我们还描述了一种电致发光裂纹检测系统,我们开发该系统是为了快速、无损地对模块中破裂的电池进行成像。有限元建模用于解释为什么与背面相比,在模块的玻璃面上加载时电池更容易破裂。关键词:模块制造、可靠性、焊接 1 简介 降低光伏制造成本的需求加上目前多晶硅原料的短缺,正在推动晶圆和电池厚度的稳步下降。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将导线焊接到电池上是更具挑战性的步骤之一。电池可能会在此过程中破裂,或者由于在此过程中造成的损坏,模块随后会破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 正在研究裂纹形成的机制,并正在开发有助于优化工艺和材料的工具,并正在开发模块级裂纹检测的改进方法。
焊接对薄型硅太阳能电池造成的损伤以及模块中破裂电池的检测 Andrew M. Gabor、Mike Ralli、Shaun Montminy、Luis Alegria、Chris Bordonaro、Joe Woods、Larry Felton Evergreen Solar, Inc. 138 Bartlett St., Marlborough, MA 01752, 508-597-2317, agabor@evergreensolar.com Max Davis、Brian Atchley、Tyler Williams GreenMountain Engineering 500 Third St, Suite 265, San Francisco, CA 94107 摘要:降低光伏制造成本的需求加上目前多晶硅原料的短缺导致硅片和电池厚度不断减小。工艺、材料和处理设备必须进行调整以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将电线焊接到电池上是变得更具挑战性的步骤之一。电池可能在加工过程中破裂,或者由于加工过程中的损坏导致模块破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 开发了有助于优化工艺、设备和材料的工具,并开发了改进的模块级裂纹检测方法。在本文中,我们描述了一种电池破损强度测试仪,我们将其构建为一种快速反馈和质量控制工具,用于改进和监控焊接过程。我们还描述了一种电致发光裂纹检测系统,我们开发该系统是为了快速、无损地对模块中破裂的电池进行成像。有限元建模用于解释为什么与背面相比,在模块的玻璃面上加载时电池更容易破裂。关键词:模块制造、可靠性、焊接 1 简介 降低光伏制造成本的需求加上目前多晶硅原料的短缺,正在推动晶圆和电池厚度的稳步下降。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将导线焊接到电池上是更具挑战性的步骤之一。电池可能会在此过程中破裂,或者由于在此过程中造成的损坏,模块随后会破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 正在研究裂纹形成的机制,并正在开发有助于优化工艺和材料的工具,并正在开发模块级裂纹检测的改进方法。
焊接对薄硅太阳能电池造成的损坏以及模块中破裂电池的检测 Andrew M. Gabor、Mike Ralli、Shaun Montminy、Luis Alegria、Chris Bordonaro、Joe Woods、Larry Felton Evergreen Solar, Inc. 138 Bartlett St., Marlborough, MA 01752, 508-597-2317, agabor@evergreensolar.com Max Davis、Brian Atchley、Tyler Williams GreenMountain Engineering 500 Third St, Suite 265, San Francisco, CA 94107 摘要:降低光伏制造成本的需求加上目前多晶硅原料的短缺,导致硅片和电池厚度不断减小。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将导线焊接到电池上是更具挑战性的步骤之一。电池可能会在焊接过程中断裂,或者由于焊接过程中的损坏而导致模块破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 开发了有助于优化工艺、设备和材料的工具,并开发了改进的模块级裂纹检测方法。在本文中,我们描述了一种电池破损强度测试仪,我们将其构建为一种快速反馈和质量控制工具,用于改进和监控焊接过程。我们还描述了一种电致发光裂纹检测系统,我们开发该系统是为了对模块中破裂的电池进行成像,提供快速且无损的反馈。有限元建模用于解释为什么与背面相比,在模块的玻璃侧加载时电池更容易破裂。关键词:模块制造、可靠性、焊接 1 简介 降低光伏制造成本的需求加上目前多晶硅原料的短缺,正在推动晶圆和电池厚度的稳步下降。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。将电线焊接到电池上是较薄电池更具挑战性的步骤之一。电池可能在此过程中破裂,或者由于在此过程中造成的损坏导致模块随后破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 正在研究裂纹形成的机制,并正在开发有助于工艺和材料优化的工具,并正在开发模块级裂纹检测的改进方法。
焊接对薄型硅太阳能电池造成的损伤以及模块中破裂电池的检测 Andrew M. Gabor、Mike Ralli、Shaun Montminy、Luis Alegria、Chris Bordonaro、Joe Woods、Larry Felton Evergreen Solar, Inc. 138 Bartlett St., Marlborough, MA 01752, 508-597-2317, agabor@evergreensolar.com Max Davis、Brian Atchley、Tyler Williams GreenMountain Engineering 500 Third St, Suite 265, San Francisco, CA 94107 摘要:降低光伏制造成本的需求加上目前多晶硅原料的短缺导致硅片和电池厚度不断减小。工艺、材料和处理设备必须进行调整以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将电线焊接到电池上是变得更具挑战性的步骤之一。电池可能在加工过程中破裂,或者由于加工过程中的损坏导致模块破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 开发了有助于优化工艺、设备和材料的工具,并开发了改进的模块级裂纹检测方法。在本文中,我们描述了一种电池破损强度测试仪,我们将其构建为一种快速反馈和质量控制工具,用于改进和监控焊接过程。我们还描述了一种电致发光裂纹检测系统,我们开发该系统是为了快速、无损地对模块中破裂的电池进行成像。有限元建模用于解释为什么与背面相比,在模块的玻璃面上加载时电池更容易破裂。关键词:模块制造、可靠性、焊接 1 简介 降低光伏制造成本的需求加上目前多晶硅原料的短缺,正在推动晶圆和电池厚度的稳步下降。工艺、材料和处理设备必须适应以保持可接受的机械产量和模块可靠性。对于较薄的电池来说,将导线焊接到电池上是更具挑战性的步骤之一。电池可能会在此过程中破裂,或者由于在此过程中造成的损坏,模块随后会破裂。为了在将 String Ribbon 晶圆厚度降至 200 微米以下时保持良好的产量和模块可靠性,Evergreen Solar 正在研究裂纹形成的机制,并正在开发有助于优化工艺和材料的工具,并正在开发模块级裂纹检测的改进方法。
I.简介嵌入式系统是可能设计或以容量固定并为单个目的或为较大系统中的单个函数创建的计算机组件和软件的集合。可以在各种项目中找到一个嵌入式系统,包括工业机械,农业和工艺部门设备,车辆,医疗设备,相机,家用电器,飞机,自动售货机,玩具和移动设备。尽管嵌入式系统是计算机系统,但它们可以具有简单的用户界面(UI)或精心设计的桌面应用程序(GUI),例如在移动设备和具有嵌入式系统的设备中看到的,这些系统旨在执行单个目的。按钮,LED,触摸屏和其他一些类型的用户界面是可行的。此外,某些系统采用远程用户界面。微处理器或微控制器可用于嵌入式系统。在两种情况下都存在一个中央集成电路(IC),通常是为实时过程进行计算的。尽管微处理器在表面上相同,但后者仅包含一个中央处理设备(CPU),该设备要求添加升级套件(例如内存芯片),而前者则构建以独立运行。微芯片或微控制器可用于嵌入式系统。在两种情况下都存在一个主要的集成电路(IC),该电路通常是为实时过程进行计算的。
1. 项目摘要 目前,履带式移动骨料破碎机主要由柴油发动机驱动,驱动液压、机械离合器或电力驱动系统。该项目旨在开发和制造履带式移动骨料破碎机的工作原型,该破碎机配备下一代永磁电机和 DC(直流)总线驱动系统。作为项目的一部分,牵头组织(特雷克斯)与女王大学和其他组织(了解该技术)合作,协助将其应用于履带式移动骨料破碎机。作为技术设计的一部分,对破碎机的运行进行了分析,以了解工作周期以及该技术在其中的工作原理。此外,作为整个项目的一部分,还研究了可提供净零电能的替代电源,适合在没有主电源的地方为机械提供动力。该项目的主要目标是开发一种效率更高的履带式移动骨料破碎机,将柴油消耗量减少 20%,未来在有电源的情况下,燃料消耗量有望进一步减少高达 90%。本项目开发的技术也适用于其他半移动应用,例如环境处理设备(如 Terex Ecotec 粉碎机)。1.1 项目组织
货物处理设备在加利福尼亚的港口和联运铁路场上用于处理货物或进行常规维护活动的任何电动车辆。DRAYAGE卡车上车,重型卡车,可运输容器化的散装或破碎的货物,空容器和底盘,往返海港和跨模式railyards。温室气体可在大气中吸收红外辐射的任何气体。港口制作的任何私人,商业,政府或军事海船否则不符合海洋船只或休闲船的定义。重型车辆的重型车辆总重量(GVWR)大于26,000磅。轻型车辆车辆的GVWR为10,000磅或低于10,000磅。中型车辆,GVWR在10,001-26,000磅之间。氮氧化物化合物(一氧化氮),氮二氧化氮(2)和其他氮氧化物通常在燃烧过程中产生,并且是烟雾形成和酸沉积的主要贡献者。颗粒物质的任何空气传播的细分材料,除了未融合的水(在标准条件下以液体或固体而存在)。零发射车辆车辆不会产生标准污染物或温室气体的排气排放。它们减少了与制动磨损减少有关的颗粒物。
摘要 — 量子信息的脆弱性使得在量子信道传输下完全将量子态与噪声隔离几乎是不可能的。量子网络是由量子处理设备通过量子信道互连而形成的复杂系统。在这种情况下,表征信道如何在传输的量子态中引入噪声至关重要。非幺正量子信道引入的误差分布的精确描述可以为量子纠错协议提供信息,以针对特定误差模型定制操作。此外,通过使用端到端测量监控网络来表征此类误差,端节点可以推断网络链路的状态。在这项工作中,我们通过引入量子网络断层扫描问题来解决量子网络中量子信道的端到端表征问题。该问题的解决方案是使用仅在端节点中执行的测量来估计定义网络中所有量子信道的 Kraus 分解的概率。我们详细研究了任意星形量子网络的情况,这些网络的量子信道由单个 Pauli 算子描述,例如比特翻转量子信道。我们为此类网络提供了多项式样本复杂度的解决方案。我们的解决方案证明预共享纠缠在参数可识别性方面具有估计优势。
保持安全的工作环境,以确保根据组织程序对任何危害进行控制或删除。确保在到达后,检查收到的所有货物是否损坏,并且就准确性(包括数量)而言,它们匹配与组织相关的文件或技术。使用机械处理设备,(MHE)和个人保护设备(PPE)安全,安全,有效地将商品安全,安全,有效地移至指定的位置,并在需要时与组织程序一致。确保在发货前检查所有商品是否损坏,并且就准确性而言,它们满足要求。在安全有效的装载和卸货中,支持交付操作员,包括安全,安全的组装和拆卸负载。确保符合相关的安全和监管标准(例如食品,药品,有害材料)的处理和存储货物。及时记录有关组织仓库管理系统的相关信息。从整个存储设施中的位置选择商品,以满足仓库订单要求,按照选择时间表一致。通过安全的方式将货物从库存地点移动,补充采摘位置数量。确保将包装的减少,再利用,返回和回收原则用于与组织程序一致的货物和收到的货物的准备。
摘要:本研究旨在提高机场飞机地面处理的效率。本研究的主要目标是改进飞机地面处理的单个流程,以加快此操作,并改善单个航班之间的周转时间,从而提高机场停机位的总体吞吐量。本研究的目的是测量飞机处理的标准机场流程的时间,测量选定机场单个航班之间的周转时间,并提高每个测量流程的效率。测量完成后,引入变化,并再次测量时间。变化主要集中在以下方面:飞机到达前地面处理设备的位置、人员部署以及地面处理设备所走的路线。测量是在夏季在固定站台上进行的,员工人数与标准人数相同,使用的飞机类型也相同。总共进行了 78 次测量,其中在飞机起飞前往下一个目的地之前的整个地面处理过程中测量了 2340 个部分时间。实施更改后,再次进行相同的测量,以查看实施的更改是否可以加快飞机地面处理的整体过程。随后,使用统计方法评估所有数据。所有测量均在科希策机场进行。