太空电梯的建设将是巨大成本和风险的行星工程的鼓舞人心的壮举。但是,好处会超过成本和风险吗?确切地说,建立这种结构的目的是什么?例如,如果太空电梯可以每天提供无推进剂(免费释放)轨道转移到太阳系及其他行星的轨道转移该怎么办?我们认为,这种好处可能会超过成本和风险。但是太空电梯可以提供这样的服务吗?在本手稿中,我们检查了3层太空电梯启动系统设计,并对使用此类设计的航天器的轨道力学提供了详细的数学分析。我们发现所有设计中的限制因素是过渡到黄道平面的问题。对于第1级和第2层,我们发现可以将自由释放转移到所有外行星都是可能的,从而达到了远远超出了当前基于地球的火箭技术的能力,但由于行星对齐而导致的覆盖率显着。对于第3层电梯,我们发现每天都有可能快速的免费释放转移到太阳系中的所有行星。最后,我们表明,第2层和3个空间电梯可以潜在地使用配重执行上演的弹弓手术,从而提供了速度乘数,该速度乘数可以大大减少到外行星和星际目的地的运输时间。
我在该部门历史上的重要时刻担任主席,因为我们开始了第一个完整的学年,成为William H. Miller III物理与天文学系。您中的许多人都知道,这个新名称认识到赋予该部门的慷慨和有远见的礼物啤酒花校友比尔·米勒(Bill Miller)。我们很高兴能意识到米勒礼物的变革潜力。通过我们在新创建的米勒研究生研究员和米勒博士后研究员计划中招募的杰出年轻学者的贡献,已经感受到了礼物的影响。在我们很高兴加入我们的第一批独立的米勒博士后研究员中,汉娜·蒂利姆(Hannah Tillim)是汉娜·蒂利姆(Hannah Tillim),他正在努力开发一种量子机械的重力理论,比阿特丽斯·塔皮亚·欧里程(Beatriz Tapia Oregung,正在研究宇宙中引力波的创造和特性。他们加入了我们正在开发新型量子材料的Sweeney同胞Eli Zoghlin和戴维斯研究员Daniel Thorngren,他正在研究研究外球外行星。
高精度温度测量正成为应用物理和基础物理等众多领域的横向需求。在大多数情况下,高精度与对高稳定环境的需求相伴而生,以确保实验的长期运行,例如系外行星探测仪器的情况 [1]。为了实现更高的稳定性,将这些实验转移到太空是一种自然的选择。事实上,越来越多的任务正在寻求在轨实验提供的稳定性,这是实现其科学目标的关键要求 [2-5]。在太空任务中,LISA 等引力波探测器 [6] 代表了温度传感中一个特别具有挑战性的领域,主要原因是这些天文台的设计目标是在毫赫兹频率范围内实现最高灵敏度。在这些超稳定操作状态下,温度波动会通过各种现象干扰科学测量,包括直接施加到测试质量上的热感应力和干涉仪中温度引起的路径长度变化 [ 7 – 10 ]。近年来,人们对开发能够实现高温度分辨率的新技术的兴趣日益浓厚。光学计量实验已证明温度精度为 80 nK / √
空间实验在技术上具有挑战性,但是天文学和星体化学研究的科学重要组成部分。国际空间站(ISS)是一个非常成功且持久的研究平台的太空实验的一个很好的例子,在过去的二十年中,它提供了大量的科学数据。但是,未来的太空平台为进行实验提供了新的机会,该实验有可能解决天体生物学和星体化学领域的关键主题。从这个角度来看,欧洲航天局(ESA)主题团队天文学和星体化学(带有更广泛的科学社区的反馈)确定了许多关键主题,并总结了2021年的“ ESA Scispace Scipace Science Community Community Community White Paper”《天体生物学和星体化学》。我们重点介绍了未来实验的开发和实施的建议,讨论原位测量,实验参数,暴露场景和轨道的类型,以及确定知识差距以及如何提高目前正在开发或高级计划阶段的未来太空曝光平台的科学利用。除了国际空间站外,这些平台还包括立方体和小萨特人,以及较大的平台,例如月球轨道门户。我们还为月球和火星上的原位实验提供了前景,并欢迎新的可能性支持搜索我们太阳系内外的系外行星和潜在的生物签名。
摘要 数千年来,人类一直梦想着探索地球和太阳系以外的空间。本文讨论了如何利用当今或不远的将来的技术实现这种星际旅行,特别关注推进技术。首先,本文考虑了星际旅行背后的动机,即它将提供有关系外行星和星际介质的大量科学信息。然后,本文讨论了使用传统航天器进行星际旅行时面临的许多挑战,包括距离、时间和能量方面的挑战。然而,许多可能的替代推进技术解决了这些问题。本文讨论的三种技术是离子发动机、核脉冲推进和光帆。本文使用全面的 Pugh 矩阵分析了每种技术的适用性。本文得出结论,光帆是星际任务的最佳选择,因为它们具有高比冲和最终速度。利用光帆技术开发了在 50 年内飞越我们最近的恒星比邻星的基础任务概念。任务概念包括讨论推动光帆所需的激光器、探测器的大小和质量、机载仪器、任务时间表、通信、部署,最后是风险分析。本文最后介绍了创建此类任务所需的未来进步和研究。
氧合光合作用是地球上几乎所有生物量生产的原因,并且可能是建立富含多细胞寿命的复杂生物圈的先决条件。地球上的生命已经演变为在广泛的光线环境中进行光合作用,但具有一个常见的基本结构,该建筑的轻度捕获天线系统与光化学反应中心相连。使用轻度收获的广义热力学模型,再加上进化算法,我们预测了可能根据不同强度和光谱曲线而发展的光收集结构的类型。我们定性地重现了多种类型的氧光自养生体的天线系统的色素组成,线性吸收曲线和结构拓扑,并表明,在各种光明环境中,相同的物理原理在不同的物理原理中发展。最后,我们将模型应用于在类似地球的系外行星上存在的代表性光环境,预测氧气和无氧光合作用都可以在低质量恒星周围发展,尽管后者似乎在最酷的M-Dwarfs周围可以更好地工作。我们将其视为迈出基本生物学过程的一般进化模型的有趣第一步,并证明了假设生物学的本质超出地球具有意义。
许多太空和地面望远镜的提案都趋向于更大的主镜孔径直径,部分原因是天体物理学界希望发现类似地球的系外行星。尽管地面望远镜的尺寸可以继续增大,但太空望远镜受到单个运载火箭整流罩尺寸的限制。为了实现越来越大的太空望远镜,必须考虑在轨组装。这项工作旨在通过评估包含不同发射平台的太空望远镜架构,了解灵活设计方案对太空组装望远镜任务的前期和长期成本的影响。分析了一个 20 米望远镜的概念,并使用结构、光学、热、发射和轨迹子系统的模型来探索灵活设计对望远镜的发射成本和相对或比较复杂性的影响。探讨了发射模块不确定性的影响,并分析了灵活的设计概念,以确定在考虑不确定性后在估计成本和复杂性方面更有利的替代设计概念。分析结果表明,应在概念开发阶段的早期探索在空间望远镜架构的范围和时间上都具有灵活性的设计概念,特别是那些使用现有望远镜任务的传统设计方面的设计概念,并且可能为现有的空间组装望远镜概念提供更好的替代方案。
自太空时代开始以来,JPL 的太空飞船已经造访过太阳、月球和所有八大行星,有些甚至已经完全飞出太阳系。JPL 将旅行者号、伽利略号和卡西尼号送往外行星,将探测器送上火星,绘制金星云层覆盖的表面,并为尼尔·阿姆斯特朗在月球上迈出“一小步”铺平道路,而 JPL 最初是一个由和平主义者管理的军用火箭研究机构,而他当时只是想探索高层大气。加州理工学院喷气推进实验室非正式成立,当时航空学教授西奥多·冯·卡门 (Theodore von Kármán) 的研究生弗兰克·马利纳 (Frank Malina) [MS ME '35, MS AE '36, PhD '40] 和一些朋友在 1936 年在干河道中试射了一台火箭发动机。JPL 自 1958 年以来一直退出火箭业务,成为其成功开发美国第一颗卫星“探险者 1 号”的牺牲品。“探险者 1 号”是为回应 1957 年 10 月发射的 Sputnik 而发射的,Sputnik 标志着苏联对低地球轨道的主权。1957 年 8 月,世界上第一枚洲际弹道导弹(俄罗斯制造)发射升空,每隔 96 分钟就会飞过上空,斯普特尼克号提醒紧张不安的美国,核弹头也可以很容易地发射到那里。这是 JPL 从武器实验室到行星探测器的历程。
Ariel(大气遥感红外系外行星大型巡天)是欧空局“宇宙视野”计划框架内采用的 M4 任务。其目的是通过凌日光谱法对已知系外行星的大气层进行巡天。发射计划于 2029 年进行。Ariel 科学有效载荷包括一台离轴、未被遮挡的卡塞格林望远镜,该望远镜为波段在 0.5 至 7.8 µm 之间的一组光度计和光谱仪提供信号,并在低温(55 K)下运行。望远镜组件采用创新的全铝设计,可耐受热变化,避免影响光学性能;它由一个主抛物面镜组成,其椭圆形孔径为 1.1 m 的长轴,随后是安装在重新聚焦系统上的双曲面次镜、抛物面重新准直三镜和一个平面折叠镜,将输出光束引导至与光学平台平行。基于 3 个柔性铰链的创新安装系统支撑着光学平台一侧的主镜。光学平台另一侧的仪器舱内装有 Ariel 红外光谱仪 (AIRS) 和精细制导系统/近红外光谱仪 (FGS/NIRSpec)。望远镜组装处于初步设计审查的 B2 阶段,开始制造结构模型;一些组件,即主镜、其安装系统和重新聚焦机制,正在进行进一步的开发活动,以提高其准备程度。本文介绍了 ARIEL 望远镜组装的设计和开发。
• 识别有机化合物的非生物来源(生命起源前化学和早期地球环境,PCE3,https://www.prebioticchem.org/) • 大分子的合成和功能以及生命的起源(PCE3,https://www.prebioticchem.org/) • 早期生命和日益复杂的生命(LIFE,https://www.lifercn.org/) • 生命与物理环境的共同进化(LIFE,https://www.lifercn.org/) • 识别、探索和描述宜居性和生物特征的环境(生命检测网络,NfoLD,https://www.nfold.org/;海洋世界网络,NOW,https://oceanworlds.space/) • 构建可居住世界(海洋世界网络,NOW,https://oceanworlds.space/;以及系外行星系统科学联盟,NExSS;https://nexss.info/) 这些研究主题由五个受社区启发的目标统一起来作为天体生物学项目的核心支柱,它们仍然是至关重要的:促进跨学科科学,加强 NASA 的任务,促进行星管理,增强社会兴趣,激励子孙后代。信息请求。在提交此文件时,NASA 的天体生物学项目正在准备一份信息请求 (RFI),以寻求广泛的社区意见,以制定即将出台的 2025 年 NASA 天体生物学十年研究、探索和综合进步战略 (NASA-DARES 2025)。该战略将通过建立一个全面的框架来塑造 NASA 天体生物学的未来,该框架将正式确立天体生物学作为 NASA 科学研究和任务组合的跨领域支柱的新兴角色——这一主题正在成为