有关多孔材料性能的研究仍在进行中(与传统沸石相比)。[1,2] 因此,详细了解孔隙结构尤为重要,但对这种复杂孔隙结构的可靠表征仍然是一项重大挑战。为了对此类分级材料进行全面的结构表征,需要结合多种互补的实验技术,例如气体吸附、X 射线衍射 (XRD)、小角度 X 射线和中子散射 (SAXS 和 SANS)、汞孔隙率测定法、电子显微镜(扫描和透射)、热孔隙率测定法、核磁共振 (NMR) 方法、正电子湮没寿命谱 (PALS) 和电子断层扫描。[3–7] 参考文献 [8] 概述了不同的孔径表征方法及其应用范围。图1说明了这些结构表征方法在孔径分析中的应用范围,也就是说,每种方法在孔径分析中的适用性都有限。气体吸附仍然是最流行的方法,因为它可以评估整个范围的微孔(孔宽<2纳米)、中孔(孔宽:2-50纳米),甚至大孔(孔宽>50纳米)。除了气体吸附之外,汞孔隙率测定法还用于表征更大的纳米孔和最大400微米的大孔。因此,气体吸附和汞孔隙率测定法的结合可以获得从孔宽<4纳米到至少≈400微米的广泛范围内的孔结构信息,凸显了这些技术对于多孔材料表征的重要性。经过一个多世纪的专门研究和开发,使用气体吸附对多孔材料进行物理吸附表征的方法已经很成熟。 20 世纪初的开创性实验和理论工作为我们理解气体吸附现象及其在结构表征中的应用奠定了基础。[10]
多孔材料在近些年得到了广泛的研究,并在传感、催化、荧光检测、质子传导、气体分离、存储等许多领域得到了广泛的应用。1–3多孔材料包括无机多孔材料、无机-有机杂化材料和有机多孔材料。在无机多孔材料中,介孔二氧化硅材料不容错过。介孔二氧化硅材料具有良好的有序孔结构、可调的孔径分布和多样的介孔形状,在吸附分离、工业催化、生物医药、环境保护等领域得到了广泛的应用。然而,也存在合成复杂、结构不明确、微观控制不精确等问题。代表性晶体多孔材料的发展历程如图1所示。沸石是晶体无机材料的典型代表,是由共角的SiO 4 和AlO 4 组成的结晶微孔铝硅酸盐
摘要:由于断电风险高,热驱动吸附式制冷机越来越受到关注。为了提高制冷机的效率,必须生产和检查新的吸附剂。在本研究中,测试了四种新开发的硅基多孔材料,并将其与通常与水搭配使用的吸附剂硅胶进行了比较。进行了使用压汞法、气体吸附和动态蒸汽吸附的扩展吸附测试。使用扫描电子显微镜确定样品的形态。使用同时热分析和激光闪光法确定热性能。本研究分析的金属有机二氧化硅 (MOS) 纳米复合材料的热性能与常用硅胶的热性能相似。MOS 样品的热扩散系数在 0.17–0.25 mm 2 /s 范围内,而硅胶的热扩散系数约为 0.2 mm 2 /s。AFSMo-Cu 测得的水吸附容量最高,为 33–35%。对于窄孔硅胶,质量吸收率约为 25%。在水吸附的情况下,观察到吸附剂的孔径至关重要,孔径大于 5 nm 的吸附剂最推荐与水配合使用。
图1。(a)根据块的体积分数(f a),可从微观相期望的定义形态的示意图。(b)AB二嵌段共聚物预期的理论相图取决于F a和χn。(c)实验获得的PS -B -PI二嵌段共聚物的相图。从F. S. Bates,G。H。Fredrickson复制;块共聚物 - 设计器软材料。物理学今天1999年,第52(2)卷,第32-38页,在美国物理研究所的许可下。9虽然SEM和AFM技术已被经典地用于获取一些有趣的信息
物理吸附是表征多孔材料最广泛使用的技术之一,因为它可靠并且能够在一种方法中评估微孔和中孔。然而,在表征无序和分层结构的多孔材料方面仍然存在挑战和悬而未决的问题。本研究引入了一个孔网络模型,旨在增强纳米多孔材料的结构表征。我们的模型基于 Bethe 晶格上的渗透理论,包括已知在毛细管冷凝和蒸发过程中导致中孔孔隙网络中吸附滞后的所有机制。该模型考虑了吸附过程中的延迟和起始冷凝以及解吸过程中的平衡蒸发、孔堵塞和空化。结合专用的非局部密度泛函理论 (NLDFT) 核,所提出的方法为模拟整个实验吸附-解吸等温线(包括解吸滞后扫描)提供了一个统一的框架。因此,该模型不仅揭示了有效连通性等关键的孔隙网络特性,而且还可以通过定量考虑孔隙网络效应来确定中孔材料的孔径分布。该方法的适用性在一组选定的纳米多孔二氧化硅材料上得到了证明,这些材料表现出不同类型的磁滞回线(类型 H1、H2a、H1/H2a 和 H5),包括有序中孔二氧化硅网络,即 KIT-6 二氧化硅、具有堵塞孔的混合 SBA-15/MCM-41 二氧化硅,以及两种无序二氧化硅孔隙网络,即分级中孔-大孔整料和多孔 Vycor 玻璃。对于所有材料,计算值和实验值之间的主要吸附和解吸等温线以及解吸扫描具有良好的相关性,从而可以确定关键的孔隙网络特性,例如孔隙连通性和孔径分布以及与孔隙网络无序性的影响及其对吸附行为的相应影响相关的参数。所提出的新型网络模型具有多功能性和丰富的纹理洞察力,可以实现以前无法实现的全面表征,因此将有助于进一步推进新型纳米多孔材料的结构表征。它有可能为设计和选择多孔材料提供重要指导,以优化各种应用,包括分离过程(如色谱法)、异相催化、气体和能量存储。
乏味。在这种情况下,在没有任何外部模板的情况下,在便利的自发自组装过程中产生的多孔混合材料是非常明显的。根据它们的孔形和尺寸以及反阳离子的不同,这些多孔材料可用于选择性诱捕分子以及催化剂(均质和异性含量),以驱动在水溶液,有机和双皮介质中的某些休眠反应。因此,有许多与使用各种技术48-52合成基于POM的多孔材料有关的报告,但通过自组装过程获得的报告很少见。重要的贡献之一是WEI,Zhang及其同事报道的,其中他们通过基于多氧计的2D纳米结构证明了可逆的碘捕获。62
从烟气中分离 SO2 的传统方法是用湿式石灰石洗涤或用胺基吸收剂处理。[6] 重油或煤燃烧产生的烟气通常含有 500-3000 ppm 的 SO2 ,使用这些成熟的方法可将其降低高达 95%。[7] 重要的是,<500 ppm 的痕量 SO2 仍残留在烟气中并排放到大气中。而且,这些残留的 SO2 会使 CO2 吸附剂失活或毒害选择性 NOx 氧化催化剂。[8–10] 因此,进一步降低烟气中的 SO2 含量具有重要的经济和环境意义。多孔材料对 SO2 的可逆物理吸附被视为进一步降低烟气中 SO2 的一种方法。目前,用金属有机骨架(MOF)进行 SO2 吸附引起了人们的浓厚兴趣。 [11–27] 金属有机骨架通常是微孔金属配体配位网络,具有均匀的孔隙率、低密度,并可通过有机连接体(即金属桥接配体)进行高度可调。[28] MOF 在作为吸附剂(特别是 N 2 、 H 2 、 CO 2 、 CH 4 等)用于未来的气体储存和气体分离 [29–31] 或有毒和污染气体的捕获方面的作用受到广泛研究。[32–38] 然而,MOF 通常不具有很高的化学和热液稳定性。[39] MOF 的优势显然在于它们的可设计性,尤其是它们可控的孔径和可修改的孔表面是无与伦比的,然而,其他多孔材料也可能具有良好的 SO 2 吸收特性。典型烟气混合物的主要成分是 N 2 或 CO 2 以及少量 SO 2 (500–3000 ppm)。[7] 对 SO 2 的亲和力优于 CO 2 和 N 2 ,这决定了高选择性,这对于实现高分离效率至关重要。有前途的材料还应具有较高的 SO 2 单气
•不可重复可重复使用的可重复使用的项目:非关键的项目,由可承受设施批准的消毒剂的非多孔材料组成。非关键可重复使用的物品的示例包括:诊断成像设备,输液泵,IV杆,睡眠表面,听诊器,步行者和轮椅。•不可重复清洁物品的非关键重复性物品:不可重复使用的不可用的物品是由多孔材料组成的(例如,织物,纸板/纸,泡沫)。一些例子是轮椅垫子,难题,滑块,吊索,手工艺品,铅笔,书籍,杂志和转移带。•个人防护设备(PPE):根据护理风险评估(PCRA)使用的手套,礼服,口罩和防护眼镜和面部保护。•护理点风险评估(PCRA):
Cognet, M.、Cambedouzou, J.、Madhavi, S.、Carboni, M. 和 Meyer, D. (2020)。通过选择性沉淀作为有价值的多孔材料,有针对性地去除锂离子电池废液中的铝和铜。材料快报,268,127564‑。https://dx.doi.org/10.1016/j.matlet.2020.127564