凝结物和材料的物理学23•CRMNal合金中顺磁和铁磁相变温的临界行为。。。。。。。。。。。。。。。。。。。。。。。。。。。。24•pH对通过热液法制备的赤铁矿α -FE 2 O 3的结构,形态和光学特性的影响。。。。。。。。。。。。。。。。。。。。32•Fe-CO-NB软磁合金的地面结构,磁性和弹性特性:簇扩展方法。。。。。。。。。。。。。。。。。。。。38•关于Fe和Ni掺杂NAMNPO 4作为钠离子电池的阴极材料的密度功能理论研究。。。。。。。。。。。。。。。。。。。44•探索碱性氧气电池中暴露于氧气后的β-12和CHI-3硼苯基阴极稳定性:一项第一原理研究。。。。。。。。。50•Mn掺杂对Cr 2 O 3纳米颗粒的结构和特征的影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。58•使用第一原理计算和实验方法的Ti 70 -nb 10 -ta 15 -ZR 5合金的弹性模量的研究。。。。。。。。。。。。。。。。。。。。。。。。64•在聚乙烯中蚀刻铝的离子轨道蚀刻微孔的结构特性,该元素通过电子底沉积与铝结合。。。。。。。。。。。。。。。。。。。。。70•TOF-SIMS和AES研究从多晶铜中脱离依赖。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。78•机器学习驱动的有机无机钙钛矿的优化用于太阳能电池应用。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。84
磁性记忆(MSM)合金的添加剂制造的最新发展表明,激光粉末床融合(L-PBF)工艺的高潜力用于制造具有复杂几何形状的基于功能性的多晶Ni-GA基于Ni-Mn-GA的作用。这项研究采用了系统的实验方法来开发和优化制造Ni-MN-GA晶格的L-PBF工艺。进行了两个独特的阶段进行实验:首先,以构建的批量样本中的选择性Mn蒸发表征;其次,研究应用过程参数对晶格支撑的相对密度和几何完整性的影响。使用优化参数制造的晶格的内密度高约99%,并经过热处理,用于化学均匀化,谷物生长和原子序。热处理的晶格在环境温度下表现出七层的调制(14m)马氏体结构,相变温度和与化学成分相对应的磁性特性。主要是,结果表明,可以通过后处理热处理在单个晶格支撑杆中获得有益的“竹粒颗粒”结构。加,他们还确认使用稀释的结构(例如晶格)可以有效防止在大量样品中观察到的裂纹。尽管对该主题还有足够的进一步研究空间,但这些结果突显了L-PBF在生产新一代基于MSM的致动设备方面的高潜力。关键字:晶格结构,4D打印,添加剂制造,激光粉末床融合,磁性记忆材料
溅射沉积如图1所示,溅射沉积过程是通过用离子轰击所需沉积材料的目标来完成的。事件离子在目标内引发碰撞级联。当级联反应以足够的能量克服表面结合能到达目标表面时,可以弹出原子。溅射室的示意图如图2所示。电场将传入的气体电离(通常是氩气)。阳性离子轰击靶(阴极)和溅射原子在底物上(阳极)。可以加热底物以改善键合。溅射产量(即从每个入射离子射出的原子的平均原子数)取决于几个参数,包括相对于表面的离子入射角,离子的能量,离子和靶原子的相对质量以及靶原子的表面结合能。虽然影响溅射的相对较大的数字参数使其成为一个复杂的过程,但具有如此多的控制参数可以对所得膜的生长和微观结构进行很大程度的控制。各向异性的晶体靶材料,晶格相对于靶表面的方向影响溅射产量。在多晶溅射目标中,以不同速率的不同方向溅射的晶粒。这可能会影响沉积薄膜的均匀性。一个关键控制参数是目标材料中纹理的均匀性。图3显示了铜单晶溅射产量的各向异性(Magnuson&Carlston,1963年)。所有面部中心材料的一般趋势均具有:S(111)> s(100)> s(110)。
我们报道了一种通过原子层沉积 ALD 在长宽比超过 35:1 的非常窄的孔内共形生产薄的、完全连续且高导电性的铜膜的方法。纯铜薄膜由新型铜 I 脒基前体、铜 IN、N -二仲丁基乙脒和分子氢作为还原剂生长。该铜前体在汽化过程中为液态,因为其熔点 77°C 低于其汽化温度 90-120°C 。因此,前体蒸汽的传输非常可重复且可控。碳和氧杂质低于 1 原子%。每个循环的生长在 SiO 2 或 Si 3 N 4 表面上为 1.5-2 Å/循环,但在金属 Ru、Cu 和 Co 表面上仅为 0.1-0.5 Å/循环。在氧化物表面,铜原子形成孤立的铜晶体,经过更多沉积循环后合并为粗糙的多晶膜。在 Ru 和 Co 金属表面上,ALD Cu 密集成核,形成光滑且附着力强的薄膜,即使对于薄至 4 个原子层的薄膜,这些薄膜也是连续的。在 2 nm Ru 基底上沉积 4 nm Cu 时,薄层电阻低于 50 / ,这足以制作用于电镀 Cu 互连线的种子层。© 2006 电化学学会。DOI:10.1149/1.2338632 保留所有权利。
使用镍的几秒极端紫外线(XUV)瞬态吸收光谱在镍M 2、3边缘进行镍中光激发载体动力学的直接测量。可以观察到,可以通过高斯拓宽(σ)和地面吸收光谱的高斯拓宽(σ)和红移(ωs)来描述光激发镍的核心水平吸收线形状。理论预测,实验结果证明,在初始快速载体热化后,电子温度升高(t)与高斯拓宽因子σ呈线性成正比,从而提供了电子温度松弛的定量实时跟踪。测量结果揭示了50 nm厚的多晶镍纤维的电子冷却时间,为640±80 fs。使用热热载体,光谱红移与电子温度变化ωs∝T 1具有幂律关系。5。通过载流子散射的快速电子热化伴随并遵循标称的4-FS光激发脉冲,直到载体达到二硫代平衡为止。与<6 FS仪器响应函数结合在一起,从在不同泵浦流动下获取的实验数据中估算了从34 fs到13 fs的载体热化时间,并且观察到电子热化时间随着泵的增加而降低。该研究提供了一个初始示例,即用XUV光实时测量金属中的电子温度和热化,并为在具有核心水平吸收光谱的金属中进一步研究光诱导的相变和载体传输的基础。
摘要:预计无机晶体在2D材料上的外延生长有望大大推进纳米版和纳米复合材料。但是,由于2D材料的原始表面是化学惰性的,因此很难在2D材料上表现出无机晶体。以前,仅通过在高温下的蒸气 - 相位沉积来实现成功的结果,而基于溶液的沉积(包括自旋涂层)使外延生长在2D材料上不一致,稀疏或不均匀。在这里,我们表明溶剂控制的自旋涂层可以将密集的外延AGCN微管均匀地沉积在各种2D材料上。将乙醇添加到水溶液中,在自旋涂层期间促进了薄的过饱和溶液层的均匀形成,这促进了在块状溶液中均匀核定的2D材料表面上的异质晶体成核。显微镜分析证实了在石墨烯,MOS 2,HBN,WS 2和WSE 2上外延AGCN微管的高度排列,均匀和密集的生长。的外延微管,是光学上可观察到的,化学上可移动的,可以在毫米大小的多晶石墨烯中对晶粒进行晶粒图,以及对van der waals waals异质结构中扭曲角度(<〜1°)的精确控制。除了这些实际应用外,我们的研究还证明了2D材料作为外延模板的潜力,即使在无机晶体的自旋涂层中也是如此。关键字:自旋涂层,外延生长,范德华外延,氰化银,2D材料,范德华异质结构H
资格 B.ED. (SCI.)、硕士、博士 主要专业领域 凝聚态物理学、固体物理学、材料物理学和材料科学 个人数据 出生地 布西亚,肯尼亚 国籍 肯尼亚人 职业 讲师/研究科学家 联系地址 201-40601,BONDO 电话 0721828604 电子邮件 gobarasa@yahoo .com ORCID 0000-0002-6036-9147 研究出版物链接 https://www.researchgate.net/profile/Godfrey-Barasa 1. 经验总结 先前的研究项目包括 1)实验制造、结构和表面表征(通过 XRD、SEM、TEM、Raman、用于高效绿色能源应用(包括等离子体催化)的各种精细复合/合金纳米多孔微结构材料的光学和电子性能研究(包括原位电化学研究)。2)CdO 掺杂 ZnO 纳米复合材料的结构和光学研究。3)多晶陶瓷/稀土复合磁性材料的合成及其磁热效应研究;交换偏置场的负磁化和符号反转;自旋重新取向过程中磁熵变随温度的变化,即结构和磁场辅助切换效应,用于自旋电子器件(如磁传感器)和数据存储应用。(使用的表征工具是 XRD、XRF、SEM、XPS,直流磁化由振动样品磁强计-VSM 在物理性能测量系统(PPMS、Quantum Design)上测量。
此外,通过利用现场发射透射电子显微镜(Fetem,Jeol Model JEM-2100F)来分析样品。为此,将制备的PDSE 2 -IPA上清液在约1:3的体积比下稀释,然后将稀释的溶液滴在Cupper网格上,并在真空干燥机中在60°C下干燥24小时。在图3(a)中,显示了随机选择的薄片的TEM图像,其中所选薄片的侧向尺寸分别在短轴中约为103 nm,在长轴中分别为207 nm。这些结果与AFM测量的观察非常匹配。此外,如图3(b)所示,以高分辨率的TEM量表进行了样品,以高分辨率的TEM量表进行了研究,该量表列出了一些PDSE 2的晶体晶格平面。晶格平面分别确定为(102),(112)和(212),这些晶格平面分别与0.35 nm,0.30 nm和0.22 nm的d间距相对表[62]。此外,如图3(c)所示,从所选区域电子衍射(SAED)模式中检测到了几个代表PDSE 2的晶格平面的多态环。这些数据表明PDSE 2样品具有高结晶度和多晶特征。我们的数据也与先前证明的结果相当一致[62]。在图3(d)中,
摘要:二维共价有机框架(2D COF)含有杂型琴,从理论上鉴定为具有可调的,dirac-cone的带状结构的半导体,预计可为下一代弹性电子的高电荷运输能力提供理想的高电荷机动性。但是,这些材料的批量合成很少,现有的合成方法提供了对网络纯度和形态的有限控制。在这里,我们报告了苯甲酮 - 伊米氨酸保护的氮基因(OTPA)(OTPA)和苯二噻吩二醛(BDT)之间的转介反应,该苯二醛(BDT)提供了一个新的半导体COF网络OTPA-BDT。将COF作为多晶粉和具有控制晶体方向的薄膜。暴露于适当的P型掺杂剂Tris(4-溴苯基)六氯乙酸苯甲酸苯二氧化苯甲酸酯后,将氮化基因淋巴结很容易被氧化为稳定的自由基阳离子,此后,网络的结晶度和方向得以维持。面向孔掺杂的OTPA-BDT COF膜表现出高达1.2×10 –1 s cm –1的电导率,这是迄今为止据报道的最高报告的亚胺连接2D COF。
高能电子和 X 射线光子与诸如卤化物钙钛矿之类的光束敏感半导体的相互作用对于表征和理解这些光电材料至关重要。使用可以在纳米尺度上研究物理特性的纳米探针衍射技术,研究了电子和 X 射线辐射与最先进的 (FA 0.79 MA 0.16 Cs 0.05 )Pb(I 0.83 Br 0.17 ) 3 混合卤化物钙钛矿薄膜 (FA,甲脒;MA,甲铵) 的相互作用,使用扫描电子衍射和同步加速器纳米 X 射线衍射技术跟踪局部晶体结构随通量的变化。从中识别出钙钛矿晶粒,在 200 e − Å − 2 的通量后,与 PbBr 2 相对应的额外反射作为晶体降解相出现。这些变化伴随着相邻大角度晶粒边界上小 PbI 2 晶体的形成、针孔的形成以及从四方到立方的相变。纳米 X 射线衍射中的光子辐照也会引起类似的降解途径,表明存在共同的潜在机制。这种方法探索了这些材料的辐射极限,并提供了纳米级降解途径的描述。解决大角度晶粒边界问题对于进一步提高卤化物多晶薄膜的稳定性至关重要,尤其是对于易受高能辐射影响的应用,例如空间光伏。