缺失模态问题对于多模态模型来说至关重要,但并非易事。当前旨在处理多模态任务中缺失模态问题的方法要么仅在评估期间处理缺失模态,要么训练单独的模型来处理特定的缺失模态设置。此外,这些模型是为特定任务设计的,例如,分类模型不易适应分割任务,反之亦然。在本文中,我们提出了共享特定特征建模 (ShaSpec) 方法,该方法比解决上述问题的竞争方法简单得多,也更有效。ShaSpec 旨在通过学习共享和特定特征来更好地表示输入数据,从而在训练和评估期间利用所有可用的输入模态。这是通过一种依赖于基于分布对齐和域分类的辅助任务以及残差特征融合程序的策略实现的。此外,ShaSpec 的设计简单性使其易于适应多种任务,例如分类和分割。在医学图像分割和计算机视觉分类方面进行了实验,结果表明 ShaSpec 的表现远胜于竞争方法。例如,在 BraTS2018 上,ShaSpec 将增强肿瘤的 SOTA 提高了 3% 以上,将肿瘤核心的 SOTA 提高了 5%,将整个肿瘤的 SOTA 提高了 3%。1
直到最近,研究人员主要对阅读中的人类行为数据感兴趣,以了解人类认知。然而,这些人类语言处理信号也可以用于基于机器学习的自然语言处理任务。目前,将脑电图大脑活动用于此目的的研究还很大程度上尚未得到探索。在本文中,我们首次进行了大规模研究,系统地分析了脑电图大脑活动数据在改进自然语言处理任务方面的潜力,特别关注了信号的哪些特征最有益。我们提出了一种多模态机器学习架构,它可以从文本输入和脑电图特征中联合学习。我们发现将脑电图信号过滤到频带中比使用宽带信号更有益。此外,对于一系列词嵌入类型,脑电图数据可以改进二元和三元情绪分类,并且优于多个基线。对于关系检测等更复杂的任务,在我们的实验中,只有情境化的 BERT 嵌入优于基线,这提出了进一步研究的需要。最后,当训练数据有限时,EEG 数据显示出特别有前景。
海洋生物膜是全球无处不在的表面相关微生物群落,由于其独特的结构和功能,引起了人们的关注。The aim of this study is to provide a comprehensive overview of the current scienti fi c understanding, with a speci fi c focus on naturally occurring bio fi lms that develop on diverse marine abiotic surfaces, including microplastics, sea fl oor sediments, subsurface particles, and submerged arti fi cial structures susceptible to biocorrosion and biofouling induced by marine bio fi LMS。本文介绍了有关海洋环境中这些表面相关微生物群落的多样性,结构,功能和动态的最新进展和发现,突出了它们的生态和生物地球化学维度,同时也是为了进一步研究海洋生物生物LMS的灵感。
a 瑞士苏黎世大学心理学系可塑性研究方法 b 瑞士苏黎世大学和苏黎世联邦理工学院苏黎世神经科学中心 (ZNZ) c 瑞士苏黎世大学大学研究优先计划“健康老龄化动力学” d 法国帕莱索巴黎萨克雷大学、Inria、CEA e 德国莱比锡马克斯普朗克人类认知和脑科学研究所神经病学系 f 加拿大魁北克省蒙特利尔蒙特利尔大学老年医学研究所功能神经影像科 g 美国德克萨斯州奥斯汀德克萨斯大学戴尔医学院计算神经影像实验室 h 美国密歇根州底特律韦恩州立大学老年学研究所和心理学系 i 加拿大蒙特利尔康考迪亚大学心理学系 j 大脑与运动研究所认知神经解剖学实验室épinière,法国巴黎 k 德克萨斯大学心理学系,美国德克萨斯州奥斯汀
精确的地理空间植被预测具有各个部门的潜力,包括农业,林业,植物援助和碳会计。为了利用卫星图像的广泛可用性来完成此任务,各种作品应用了深层神经网络,以预测具有逼真质量的多光谱图像。但是,尚未彻底探索植被动力学的重要领域。我们的研究介绍了Greenearthnet,这是第一个专门为高分辨率植被预测设计的数据集,以及ContextFormer,这是一种新颖的深度学习方法,可预测Sentinel 2卫星2卫星图像,并在整个Eu-Rope之间进行精细分辨率。我们的多模式变压器模型上下文形式通过视觉主链利用空间上下文,并以参数有效的方式预测局部上下文贴片上包含气象时间序列的时间动态。Greenearthnet数据集具有学习的云蒙版和适当的植被建模评估方案。它还与现有的卫星图像预测数据集SEARNET2021保持兼容性,从而实现了跨数据库模型比较。我们广泛的定性和定量分析表明,我们的方法的表现优于广泛的基线技术。这包括超越了SEARNET2021上的先前最先进的模型,以及时间序列预测和视频预测的改编模型。我们提供开源代码和预训练的权重,以根据https:// gith ub.com/vitusbenson/greenearthnet [10]重新产生我们的实验结果。据我们所知,这项工作为大陆规模植被建模的第一个模拟介绍了良好的分辨,能够在季节性周期以外捕获异常,从而为对气候变化和极端的响应铺平了预测植被健康和行为的道路。
1 “Enrico Piaggio”研究中心和 Dipartimento di Ingegneria dell'Informazione,比萨拉戈大学 Lucio Lazzarino 1, 56122 比萨,意大利; 2 用于人类合作与康复的软机器人,Fondazione Istituto Italiano di Tecnologia,Via Morego 30, 16163 Genova,意大利; 3 RSI - 慕尼黑工业大学 (TUM) 慕尼黑机器人与机器智能学院机器人与系统智能主席,Heßstr。 134, 80797 慕尼黑, 德国; 4 MoMiLab 研究中心,IMT 卢卡高级研究学院,Piazza S. Francesco 19, 55100 Lucca, Italy; 5 苏黎世大学神经病学系血管神经病学和神经康复科,Frauenklinikstrasse 26, 8006 苏黎世,瑞士;6 汉诺威医学院矫形外科系生物力学和生物材料实验室 (LBB),L384, 30625 汉诺威,德国;7 苏黎世健康科学与技术系机器人与智能系统研究所康复工程实验室,CLA H 1.1 Tannenstrasse 3, 8092 苏黎世,瑞士
摘要 — 戏剧作品中的情感识别在基本的人机交互、情感计算和其他各种应用中起着关键作用。传统的单模态情感识别系统在捕捉人类情感的复杂性和细微差别方面往往面临挑战。为此,本研究调查了多种模态信息的整合,包括面部表情、语音和生理信号,以增强情感识别系统的稳健性和准确性。通过结合这些不同的信息来源,我们的目标是更全面地了解人类的情感,并提高情感识别模型的性能。该研究探索了各种方法,包括特征融合、注意力机制和跨模态迁移学习,以有效地结合和利用来自面部表情、语音和生理信号的信息。此外,我们解决了与领域适应和缺失数据处理相关的挑战,确保所提出的多模态方法在数据收集条件可能变化的现实场景中保持稳健。为了证实所提出方法的有效性,我们在为多模态情感识别精心制作的基准数据集上进行了实验。该数据集包括通过面部特征、录音和生理传感器捕捉到的各种情绪表达。评估指标经过精心选择,以评估模型在各种模式下捕捉人类情绪的复杂性和细化程度的能力。我们的研究通过深入了解面部表情、语音和生理信号之间的相互作用,加深了对多模态情绪识别的理解。所提出的框架不仅提高了情绪识别的准确性,而且还提供了对情绪状态的更全面理解,促进了人机交互和情感计算应用的进步。
随着大型语言模型(LLM)的成功,将视觉模型融入了LLM,以建立视觉语言基础模型最近引起了人们的兴趣。但是,现有的基于LLM的大型多模式模型(例如,视频播放,视频聊天)只能摄入有限数量的框架以进行简短的视频理解。在这项研究中,我们主要专注于设计一个有效有效的模型,以进行长期视频理解。我们建议以在线方式处理视频并将过去的视频信息存储在存储库中,而不是像大多数现有作品一样尝试同时进行更多框架。这使我们的模型可以参考历史视频内容以进行长期分析,而不会超过LLM的上下文长度约束或GPU内存限制。我们的内存库可以以现成的方式被缝制到当前的多模式LLMS中。我们在各种视频理解任务上进行了广泛的实验,例如长期介绍,视频问题答案和视频字幕,我们的模型可以在多个数据集中实现最新的性能。
在班级学习(CIL)方案中,由于阶级的偏见对当前任务的偏见引起的灾难性遗忘者长期以来一直引起了重大挑战。它主要由判别模型的特征引起。随着生成性多模式模型的日益普及,我们将探索用CIL生成的歧视模型代替歧视模型。,从歧视到生成模式过渡需要解决两个关键挑战。主要挑战在于将生成的文本信息转移到不同类别的分类中。在方面,它需要在生成框架内制定CIL的任务。为此,我们提出了一种新颖的生成性多模式模型(GMM)框架,用于类增量学习。我们的方法直接使用改编的生成模型为图像生成Labels。获得详细的文本后,我们使用文本编码器来阐述文本特征,并采用匹配的功能来确定最相似的标签与分类的标签。在传统的CIL设置中,我们在长期序列的任务方案中取得了更好的影响。under少数CIL设置,与所有当前最新方法相比,我们的精度至少提高了14%,而遗忘的遗忘明显较小。我们的代码可在https://github.com/doubleclass/gmm上找到。
近年来,生成模型取得了重大进展,尤其是在文本到图像合成领域。尽管取得了这些进展,但医学领域尚未充分利用大规模基础模型的功能来生成合成数据。本文介绍了一种文本条件磁共振 (MR) 成像生成框架,解决了与多模态考虑相关的复杂性。该框架包括一个预先训练的大型语言模型、一个基于扩散的提示条件图像生成架构和一个用于输入结构二进制掩码的附加去噪网络。实验结果表明,所提出的框架能够生成与医学语言文本提示一致的逼真、高分辨率和高保真的多模态 MR 图像。此外,该研究根据文本条件语句解释了生成结果的交叉注意力图。这项研究的贡献为未来文本条件医学图像生成的研究奠定了坚实的基础,并对加速医学成像研究的进步具有重要意义。