摘要 - Spike分选对于从神经信号中提取神经元信息并了解脑功能至关重要。随着高密度微电极阵列(HDMEAS)的出现,多通道尖峰分类的挑战和机遇已经加剧。实时尖峰排序特别对于闭环大脑计算机界面(BCI)介绍至关重要,要求有效的硬件实现。本文介绍了L-Sort,这是一种用于实时多通道尖峰排序的硬件设计。利用尖峰定位技术,L-SORT可实现有效的尖峰检测和聚类,而无需在检测过程中存储原始信号。通过合并中值阈值和几何特征,L-SORT在准确性和硬件效率方面展示了有希望的结果。我们使用使用高密度神经探针(Neuropixel)记录的公开数据集评估了设计的检测和聚类精度。我们在FPGA上实施了设计,并将结果与最先进的状态进行了比较。结果表明,与其他基于FPGA的Spike分类硬件相比,我们的设计消耗了更少的硬件资源。索引术语 - Spike Anting,Spike Netization,Hardware
Vulos波形在直接视线和SATCOM模式下提供了加密和纯文本语音和数据通信。波形在VHF和UHF频率范围内运行,并使用Vinson(16K KY-57),KG-84 MODES 1-4,ANDVT(KYV-5)和TSV(TSVCIS)提供加密的数据,具有2.4和16k的语音和数据模式。Vulos提供了多种调制,包括FM,FSK,AM,ASK,SBPSK和CPM通信,并且与操作这些模式和调制的实地设备可互操作。使用SBPSK语音和数据模式以及MIL-STDD-1888-181B中所述的SBPSK语音和数据模式,均以窄带(5 kHz)和宽波段(25 kHz)通道宽度提供的卫星操作模式。这些调制也以视线模式在UHF频率范围内提供。fm,fsk,am和询问在VHF和UHF频率范围内以视线模式提供。
著名的贝叶斯说服模型考虑了知情人物(发送者)和未知的决策者(接收者)之间的战略沟通。当前快速增长的文献假定二分法:发件人的功能足够强大,可以与每个接收器分开通信(又称A.私人说服力),或者她根本无法分开交流(又称公开说服)。我们提出了一个模型,该模型通过引入自然的多渠道通信结构来平滑两者之间的插值,每个接收器都会观察到Senderšs通信通道的子集。此捕获,例如网络上的接收器,在该网络上,信息溢出几乎是不可避免的。我们的主要结果是一个完整的表征,指定何时在一个通信结构比另一个通信结构更好的情况下,在所有先前的分布和实用程序功能上都产生更高的最佳预期实用性。表征是基于接收器之间的简单成对关系ű一个接收器信息至少观察到相同的通道,则将其范围为另一个。我们证明,当且仅当M 1中的每个信息对接收器中的每对接收器中,M 1也比M 2更好。此结果是贝叶斯说服的最通用模型,在该模型中,接收者可能具有外部性ű即,接收者的行动相互影响。证明是受密码启发的,它与秘密共享协议有密切的概念连接。作为主要结果的令人惊讶的结果,发件人可以仅使用O(log k)通信渠道而不是幼稚实施中的k渠道来实现k接收器的私人贝叶斯说服(这是发件人的最佳通信结构)。我们提供了一种实现,该实现与通道数量的信息理论下界匹配ű不仅是渐近,而且完全是恰好。此外,主要结果立即暗示了在网络中排列的说服接收器的一些结果,以使每个接收器都观察到发送给他的信号和网络中的邻居。,当自然状态的数量恒定时,发件人具有添加剂函数时,我们还为最佳的Senderšs信号传导方案提供了添加剂fptas,并且接收器的信息为式效用是一个有向森林。我们专注于恒定数量的状态,即使是公众说服力和添加剂senderšs实用程序,[2]表明,人们既不能实现添加剂PTA,也不能实现多项式的恒定时间恒定量子器最佳senderšs实用性近似(除非p = np)。我们离开了未来的研究,研究森林交流结构的确切障碍,并将我们的结果推广到更多的senderšs实用功能和通信结构。请注意,可以轻松地从[3]和[1]中推导出,对于公共和私人说服力,可以为这种实用功能提供最佳信号传导方案。这种差异说明了一般多通道说服力的概念和计算硬度。最后,我们证明,在多渠道说服下使用最佳信号方案对于一个senderšs实用程序功能的一般家族在计算上很难ű可分离的超级乔治函数,这是通过选择接收器集的一组分区并列为多个元素的群众,而不是群体的构成,这些功能是通过选择一组接收器的分区来分配的。
• 前一年不依从者到研究年度依从者的比例 - 前一年结束时不依从但在研究年度转变为依从者的患者比例。 • 前一年依从者到研究年度不依从者的比例 - 前一年结束时依从但在研究年度转变为不依从的患者比例。 • 研究年度新患者的依从性 - 在前一年不属于人群或前一年不符合资格标准的患者中,在研究年度转变为依从的患者比例。这包括新符合该指标的患者,因为他们新加入研究健康计划、新加入 Walgreens 和/或新开始服药。 • 前一年符合条件的患者的研究年度依从率 - 比较每个组中前一年依从人群和研究年度依从者的比例。 • 研究年度的依从率,无论患者前一年是否符合资格——研究年度中符合资格并实现依从性的患者比例。