多渠道贝叶斯说服
机构名称:
¥ 1.0

著名的贝叶斯说服模型考虑了知情人物(发送者)和未知的决策者(接收者)之间的战略沟通。当前快速增长的文献假定二分法:发件人的功能足够强大,可以与每个接收器分开通信(又称A.私人说服力),或者她根本无法分开交流(又称公开说服)。我们提出了一个模型,该模型通过引入自然的多渠道通信结构来平滑两者之间的插值,每个接收器都会观察到Senderšs通信通道的子集。此捕获,例如网络上的接收器,在该网络上,信息溢出几乎是不可避免的。我们的主要结果是一个完整的表征,指定何时在一个通信结构比另一个通信结构更好的情况下,在所有先前的分布和实用程序功能上都产生更高的最佳预期实用性。表征是基于接收器之间的简单成对关系ű一个接收器信息至少观察到相同的通道,则将其范围为另一个。我们证明,当且仅当M 1中的每个信息对接收器中的每对接收器中,M 1也比M 2更好。此结果是贝叶斯说服的最通用模型,在该模型中,接收者可能具有外部性ű即,接收者的行动相互影响。证明是受密码启发的,它与秘密共享协议有密切的概念连接。作为主要结果的令人惊讶的结果,发件人可以仅使用O(log k)通信渠道而不是幼稚实施中的k渠道来实现k接收器的私人贝叶斯说服(这是发件人的最佳通信结构)。我们提供了一种实现,该实现与通道数量的信息理论下界匹配ű不仅是渐近,而且完全是恰好。此外,主要结果立即暗示了在网络中排列的说服接收器的一些结果,以使每个接收器都观察到发送给他的信号和网络中的邻居。,当自然状态的数量恒定时,发件人具有添加剂函数时,我们还为最佳的Senderšs信号传导方案提供了添加剂fptas,并且接收器的信息为式效用是一个有向森林。我们专注于恒定数量的状态,即使是公众说服力和添加剂senderšs实用程序,[2]表明,人们既不能实现添加剂PTA,也不能实现多项式的恒定时间恒定量子器最佳senderšs实用性近似(除非p = np)。我们离开了未来的研究,研究森林交流结构的确切障碍,并将我们的结果推广到更多的senderšs实用功能和通信结构。请注意,可以轻松地从[3]和[1]中推导出,对于公共和私人说服力,可以为这种实用功能提供最佳信号传导方案。这种差异说明了一般多通道说服力的概念和计算硬度。最后,我们证明,在多渠道说服下使用最佳信号方案对于一个senderšs实用程序功能的一般家族在计算上很难ű可分离的超级乔治函数,这是通过选择接收器集的一组分区并列为多个元素的群众,而不是群体的构成,这些功能是通过选择一组接收器的分区来分配的。

多渠道贝叶斯说服

多渠道贝叶斯说服PDF文件第1页

多渠道贝叶斯说服PDF文件第2页