IFM 接收器的工作原理 当前的 IFM 接收器技术对 RF 频率、RF 幅度和 RF SNR 进行采样;随后的数字处理提取峰值 RF 幅度、与峰值 RF 测量时间同步的 RF 输入频率、TOA 和 RF 包络脉冲宽度。测量结果通过每个时钟周期估算的最小可接受 RF SNR 进行限定。这使接收器能够自动调整以适应输入 SNR 的变化,而无需积分噪声附加阈值。IFM 接收器数字处理和串行 PDW 生成使其成为处理超外差接收器 IF 输出的理想设备。在许多 ELINT 系统中,采用两个 IFM 接收器和一个超外差接收器的并行组合。一个 IFM 接收器提供 2-18GHz 的瞬时单频带覆盖,而超外差接收器使用第二个 IFM 接收器进行 IF 处理,提供对选定信号的高灵敏度精确分析。这种组合同时提供了高截获概率 (HPI) 能力和详细分析能力。IFM 接收器最显著的操作优势也是其最大的缺点:虽然它准确地处理瞬时观察到的最大 RF 输入信号,但它忽略了同时存在的较小功率的 RF 输入。在 IFM 接收器的早期开发中,同时出现低于 20dB 的信号并不罕见
• Total Ionizing Dose (TID) test using Co-60 source • Conducted at Fraunhofer Institute for Technological Trend Analysis (FhG/INT) at Euskirchen, Germany • Hardware-in-the-loop test setup • Live GPS signals via roof-top antenna • Reference receiver operated outside test chamber • Direct comparison of navigation solution and raw data
技术转让和工业接口部 (TTID)、PPG 空间应用中心 (SAC)、ISRO、Ambawadi Vistar、艾哈迈达巴德 - 380 015 电子邮箱:ttid@sac.isro.gov.in 传真:079-26915817 https://www.sac.gov.in/SAC_Industry_Portal
使用高效隔离电源为 RF/IF 和解码器组件提供主电源和底盘之间大于 1 MΩ 的隔离。简单的机械封装设计由单个底盘和一个外部盖子组成,总体积为 3.7 立方英寸。此外,铝合金底盘具有出色的强度重量比以及出色的导热性和导电性。机械封装经过精心设计和环境密封,可在特定的导弹和无人机环境中使用,且不会降低电气性能。每个接收器均可在 420 MHz 至 450 MHz 之间进行现场调谐。频率控制通过对锁相合成器的数字控制执行,该合成器可以 100 kHz 步长进行编程。
没有终止电阻,收发器的内部共同模式电压缓冲区仍然可以将canh and Canl带在一起,但速率要慢得多。总线线上的电容载荷也可以减慢CANH和罐头电压的合并。When the controller sends pulses to the TXD pin, and if the recessive interval is not long enough for the differential voltage (CANH – CANL) to go below the input low-threshold for 10 consecutive pulse cycles (RXD signal stays low for the 10 TXD-signal pulses), a trans- mission failure fault will be reported.这也意味着,如果TXD信号的高时间太长,则可以进入隐性模式,并且RXD信号将变高,不会报告传输故障故障。推荐的最小TXD脉冲频率检测到反式失效故障,为200 kHz。
技术转让和工业接口部 (TTID)、PPG 空间应用中心 (SAC)、ISRO、Ambawadi Vistar、艾哈迈达巴德 - 380 015 电子邮箱:ttid@sac.isro.gov.in 传真:079-26915817 https://www.sac.gov.in/SAC_Industry_Portal
在不久的将来,CSP 电厂有望作为峰值电厂运行。换句话说,它们将频繁启动,以便在电网需要时发电,这样运营商就可以利用 CSP 电厂的可调度性。因此,熔盐蒸汽发生器必须每天启动,而且启动时间必须尽可能短,以最大限度地提高电力生产和安装利润。为此,John Cockerill 开发了一种创新的热交换器概念,这种热交换器具有广泛的操作范围,能够承受高温坡度,并且专为频繁启动而设计。此外,他们非常重视使这些热交换器尽可能可靠,特别是在高温下使用熔盐相关的腐蚀问题方面。最后,得益于其创新设计,John Cockerill 大大降低了泵消耗,并降低了这些热交换器结垢的风险。因此,John Cockerill 在发电厂的整个使用寿命期间优化了能源生产。
执行摘要 • 空军作战测试与评估中心 (AFOTEC) 于 2012 年 5 月 18 日至 7 月 16 日完成了 IOT&E。飞行测试在内华达州法伦靶场训练中心和佛罗里达州埃格林空军基地的多光谱测试与训练环境中进行,总威胁暴露时间为 12 小时。该系统在 IOT&E 期间总共记录了 204 小时的运行时间。• DOT&E 评估该系统在操作上不有效,但在操作上适用。该系统在操作上无效,因为它不能持续向机组人员提供及时准确的威胁信息,并且系统表现出随机威胁符号分裂缺陷。当系统接收到一个威胁信号在驾驶舱显示屏上以不同的方位角产生多个威胁符号时,就会发生威胁符号分裂。这降低了机组人员对所显示威胁的“真实”程度以及这些真实威胁所在位置的态势感知能力,并抑制了机组人员及时对威胁做出适当反应的能力。DOT&E 评估的详细信息在 DOT&E 的机密 IOT&E 报告中提供,该报告于 2012 年 10 月发布。• 尽管空军系统计划办公室 (SPO) 和雷神公司进行了硬件在环 (HWIL) 测试以证明威胁信号分离缺陷已得到解决,但 DOT&E 认为 HWIL 测试本身不足以验证缺陷已得到解决,并且软件更新不会导致任何其他不良系统性能。
• ALR-400 RWR 是飞行员自我保护平台的最佳盟友 • ALR-400 旨在通过几个标准机械外壳轻松安装在各种平台(包括战斗机、运输机和直升机)上。 • ALR-400 的冷却系统使其成为即使在爆炸性环境中运行的理想选择 • 模块化设计,灵活的硬件架构 • 高空间精度和分辨率 • 广泛的空间覆盖范围 • 多 CW 场景能力 • LPI 雷达检测能力 • 提高灵敏度 • 提高动态范围 • 灵活集成 • 逻辑 ICD 适应平台
简介:FM 收音机是一个非常有趣的话题!我听不清楚妈妈在厨房跟我说话。有些是选择性听力的一部分,特别是当她问作业的时候。但我能听到有人在全国各地现场唱歌。解释一下!我们 Srivastha 和 Soham 都是音乐系的学生。因此,通过无线电波传输的声音显然是一个令人着迷的课题。声音如何在如此长的距离内传输而不损失其质量?理论:我们将理论理解为声波首先由幅度或频率 (AM 或 FM) 调制,然后使用高功率天线传输。FM 接收器是一个微型电子电路,能够接收 FM 信号,消除噪音,然后放大并将其转换为人类可以听到的音频范围。我们想尝试从头开始构建它并亲自测试它的工作原理。什么是 FM 发射器?FM 发射器是一种使用非常低的功率运行并使用(频率调制)FM 波传输声音的电路。借助此类 FM 发射器,我们可以轻松地通过不同频率的载波长距离传输音频信号。这就是广播电台/塔的作用。载波的频率与具有幅度的音频信号的频率相同。FM 发射器产生从 88 HZ 到 108 MHZ 的 VHF 范围。