作为非易失性记忆设备的有前途的候选人,基于Hafnia的铁电系统最近一直是一个热门研究主题。尽管在过去十年中取得了显着进步,但耐力问题仍然是其最终应用的障碍。在基于钙钛矿的铁电磁体中,例如研究良好的PB [Zr X Ti 1-X] O 3(PZT)家族,在电荷缺陷(例如氧气空位)与移动域的相互作用的框架内讨论了极化疲劳,尤其是在电极界面上,尤其是在转换过程中。武装在这种背景下,设定了一个假设,以检验类似的机制可以与基于Hafnia的铁电机一起发挥作用。导电钙钛矿LA-SR-MN-O用作建立LA 0.67 SR 0.33 MNO 3 / HF 0.5 Zr 0.5 O 2(HZO) / LA 0.67 SR 0.67 SR 0.67 SR 0.33 MNO 3 MNO 3式结构的接触电极。纳米级X射线差异在单个电容器上进行,并在双极切换过程中证明了从极性O期向非极性M期的结构相变。已在不同的氧空位浓度下计算了多相HZO的能量格局。基于理论和实验结果,发现在电循环过程中由氧空位再分配引起的极性到非极相变,这可能是HZO疲劳的一种解释。
cERH 2 AS 2是一个多相超导体,t c = 0.26 k。两个超导(SC)阶段SC1和SC2观察到的磁场h平行于与四方单位细胞的C轴平行于t型型单位电池的C轴,已解释为偶数和奇数SC状态,在quant-Parity SC状态下,在一个可能的rash iS sy-0 rash y rash sy-0 rash y rash中分离为µ 0。位于全球中心对称晶格的局部非中心对称环境中的CE站点的自旋轨道耦合。在温度t0≈0.4k以下的另一个有序状态(I阶段I)的存在表明H ∗过渡的替代解释:它分离了混合的SC+I(SC1)和纯SC(SC2)状态。Here, we present a detailed study of higher quality single crystals of CeRh 2 As 2 , showing much sharper signatures at T c = 0.31 K and T 0 = 0.48 K. We refine the T - H phase diagram of CeRh 2 As 2 and demonstrate that T 0 ( H ) and T c ( H ) lines meet at µ 0 H ≈ 6 T, well above H ∗ , implying no influence of Phase I on the SC phase switching.与金茨堡 - 陆理论的基本分析表明,这两个顺序之间的竞争较弱。
GEC 在提供交流思想和报道低温等离子体科学和技术研究的场所方面处于领先地位。重点领域是等离子体源科学、诊断、建模、等离子体化学、基本现象以及原子和分子碰撞过程。GEC 经常走在报道等离子体技术新兴领域的最前沿,包括微电子、推进、生物技术、等离子体医学、多相等离子体、环境应用和大气压等离子体系统。2024 年 Will Allis 奖演讲将由美国休斯顿大学 William A. Brookshire 化学和生物分子工程系的 Vincent Donnelly 发表。他的演讲题为“在不同寻常的地方寻找等离子体诊断技术”。Will Allis 电离气体研究奖是 GEC 社区的一个重要奖项。感谢英特尔公司、泛林集团和美光科技公司的慷慨捐助,APS 现在每年都会颁发威尔·阿利斯电离气体研究奖。奖项提名截止日期为 2024 年 6 月 3 日星期一。详情可在威尔·阿利斯奖网站上找到。2024 年 GEC 将邀请等离子体科学和技术以及原子和分子碰撞领域的领军人物发表演讲。受邀演讲者的完整名单可在 www.apsgec.org/gec2024/invited_speakers.php 上找到。除其他主题外,这些受邀演讲者还将讨论:
异质结构 (HS) 材料由于其多种微观结构和优异的物理性能而受到广泛研究[1 e 5]。它们由不同性质的软硬异质区组成,不同区域之间的协同效应可改善物理性能。HS 材料根据硬区形状可分为层状结构[6,7]、梯度结构[5,6,8,9]、层压结构[10 e 13]、双相 (或多相) 结构[14 e 19]和核壳结构[20 e 22]。十年来,另一种互连 (或互穿) 结构一直受到人们的关注。这种结构具有双连续的两个不同的区域,其中硬相和软相都是连续的且相互交错。这种独特的结构包括胞状结构(如螺旋状结构)和由旋节线分解形成的空间无序模式。双连续结构的软区和硬区在机械上互相约束。增材制造[23,24]和粉末冶金[25,26]已用于开发互连的HS材料。然而,这些方法在区域大小及其分布方面存在技术限制。纳米级区域和均匀分布对于提高协同效应至关重要。最近,作者提出,通过液态金属脱合金(LMD)合成的3D互连HS材料在克服强度-延展性权衡方面具有巨大潜力[27]。从(FeCr)50Ni50前驱体中,可混溶的Ni选择性地溶解在Mg熔体中。
摘要诱导的极化方法(IP)方法具有强大的潜力,可以更好地表征我们星球的临界区域,尤其是在以多相流动为特征的区域中。散装,表面和正交电导率与孔隙水饱和度之间的功率 - 功率 - 差异可能可用于绘制地下水分含量分布。然而,已经观察到这些功率流行关系中的饱和指数n和p随着地材料的质地和孔隙流体的湿气而变化。实验室中的传统实验设置不允许独立可视化孔隙流体分布。因此,两个饱和指数的物理解释尚不清楚。我们使用粘土涂层的玻璃珠开发了一种新型的毫米 - 流体微型模型,该玻璃珠具有出色的可见性和高IP响应。通过实验室实验,我们同时确定了微型模块的复合电导率,并通过此类多孔材料获得了由排水和吸收产生的相应的孔隙尺度流体分布。基于晶粒的复杂表面电导的升级,进行了复杂电导率的有限元模拟,以确定理想的孔隙流体分布下的饱和指数。结果表明,饱和指数n和p因绝缘流体的神经节大小而变化。饱和指数n和p与饱和孔连接性的变化速率表现出功率差异关系,这是通过计算Euler特征的导数来计算的。这些发现为饱和指数与微观流体分布之间的关系提供了新的物理解释。
这种实用的课程为您提供了设计纳米材料并验证其晶体化学和形态的工具。重点是学习访问科学软件包中的关键数据库和培训,以可视化和定量提取晶体学信息。在模块1中,引入了“晶体晶格中的模式”是空间对称性,以使您能够从晶体学开放数据库中读取晶体学信息文件(CIF)。使用此数据晶体结构可以可视化,并计算出粉末X射线衍射模式。在模块2中,“晶体结构的化学”提供了设计具有可接受的键价和稳定化合物的策略,通过晶体结构的细化来表征材料,并通过实验衍射数据的最小二乘细化来找到纳米晶体的尺寸。在模块3中,“晶体组合的特征”将使您能够对多相纳米晶体组合进行定量相分析,并与能量色散X射线光谱化学分析一致。您将掌握四个软件包 - 原子(晶体结构可视化),vesta(键价求和),高分(定量相分析)和DSTA-II(化学微分析) - 共同提供了一个平台,以发现和证明纳米材料的性质。这项实用的课程将为您准备工作,以便在从事材料开发的公司,在进行环境和化学审计的政府机构中工作,或继续进行更高的研究生研究。
神经系统中的单脉冲电刺激,通常称为皮层间诱发电位 (CCEP) 测量,是了解大脑区域如何相互作用的重要技术。在用相隔几秒钟的短暂电流脉冲刺激一个大脑区域的同时,测量植入在一个大脑区域的电极的电压。从历史上看,研究人员曾尝试通过目视检查来了解诱发电压多相偏转的意义,但还没有出现通用工具来了解它们的形状或用数学方法描述它们。我们描述并说明了一种参数化大脑刺激数据的新技术,其中使用半标准化点积将电压响应轨迹投影到彼此中。点积中包含的刺激时间点的长度会有所不同,以获得结构意义的时间分布,并且分布的峰值唯一地标识了响应的持续时间。使用线性核 PCA,可在此持续时间内获得典型响应形状,然后将单次试验轨迹参数化为具有残差项的典型形状的投影。通过量化交叉投影幅度、响应持续时间、典型形状投影幅度、信噪比、解释方差和统计显著性,这种参数化允许直接比较来自不同大脑区域的不同轨迹形状。通过交叉投影幅度子分布中的异常值,可以自动识别并拒绝伪造试验。这种我们称之为“典型响应参数化”(CRP)的技术大大简化了 CCEP 形状的研究,并且还可以应用于涉及事件触发数据的其他广泛设置中。
使用高速撞击点火测试系统研究脆性铝热剂弹丸以 850 和 1200 米/秒的速度撞击惰性钢靶时的动态响应。弹丸包括固结的铝和三氧化二铋,由推进剂驱动的枪发射到配备高速成像诊断装置的捕集室中。弹丸穿过捕集室入口处的防爆屏,在穿透防爆屏时碎裂或在撞击钢靶之前保持完整。在所有情况下,弹丸在撞击时都会粉碎,反应碎片云会扩散到捕集室中。在较低的撞击速度下,碎裂弹丸和完整弹丸产生的火焰蔓延速度相似,均为 217 – 255 米/秒。在较高的撞击速度下,完整的射弹产生最慢的平均火焰蔓延速度,为 179 米/秒,因为碎片的反弹受到射弹长度的限制,并且由此产生的碎片场在径向高度集中。相比之下,破碎的射弹反弹成分散良好的碎片云,其火焰蔓延速度最高,为 353 米/秒。提出使用动能通量阈值来描述观察到的碎片分散和火焰蔓延速度的变化。使用计算流体力学代码开发了一种基于粒子燃烧时间的反应性模型,该模型结合了多相环境中的传热和粒子燃烧,以了解粒径如何影响火焰蔓延。模型结果显示,对于较小颗粒碎片,更快的反应性和增加的阻力抑制运动之间存在权衡。
二硫族化合物 MX 2 (过渡金属 M 和硫族元素 X) 是范德华耦合的层状准二维材料,具有可定制的电子特性,因此在器件、气体传感器和化学过程方面具有重要意义。[1] 其基础是多相和堆叠顺序的存在,以及作为主体材料进行掺杂和插层的能力。[2] 二硫族化合物辉钼矿 (MoS 2 ) 是一种热力学稳定的块体晶体,间接带隙为 1.2 至 1.3 eV。[3–5] 其晶体结构由堆叠的 S–Mo–S 片组成,具有 A–B–A 堆叠的三角棱柱对称性,其中顶部和底部 S 平面中的硫原子占据等效的垂直位置。[3] S–Mo–S 片之间的距离为 6.5 Å。 [6] 从间接带隙块体 2H-MoS 2 到单层,带隙逐渐加宽,单层 MoS 2 的直接带隙达到 1.9 eV。[5] 半导体 2H-MoS 2 相支持通过化学和物理方法诱导的 n 型和 p 型掺杂。[7–11] 据报道,插层、电子、光学和热激发以及机械应变和层取向。[3,12–16] 将 S-Mo-S 层中一个 S 平面的硫原子滑动 1.82 Å 会导致单层内的 ABC 堆积,其中硫原子占据 2H 相六边形的中心,从而产生金属 1T-MoS 2 相。 [3,17] 金属 1T-MoS 2 相可以通过电子注入来稳定,例如用电子显微镜直接注入电子或通过吸附的锂原子提供电子。[12,17–21]
这是一篇关于先进高强度钢 (AHSS) 微观结构-性能关系理解的最新进展的观点论文。这些合金构成一类高强度可成型钢,主要设计为运输部门的板材产品。AHSS 通常具有非常复杂和多层次的微观结构,由铁素体、奥氏体、贝氏体或马氏体基体或这些成分的双相或甚至多相混合物组成,有时还富含沉淀物。这种复杂性使建立可靠的、基于机制的微观结构-性能关系具有挑战性。目前已有许多关于不同类型 AHSS 的优秀研究(例如双相钢、复相钢、相变诱导塑性钢、孪生诱导塑性钢、贝氏体钢、淬火和分配钢、压硬钢等),并且出现了几篇概述,其中讨论了它们的与机械性能和成型相关的工程特征。本文回顾了该领域微观结构和合金设计的最新进展,特别关注了利用复杂位错亚结构、纳米级沉淀模式、变形驱动转变和孪生效应的含锰钢的变形和应变硬化机制。本文还回顾了微合金纳米沉淀硬化钢和压硬化钢的最新发展。除了对其微观结构和性能进行批判性讨论外,还评估了它们的抗氢脆和损伤形成等重要特性。我们还介绍了应用于 AHSS 的先进表征和建模技术的最新进展。最后,讨论了机器学习、全过程模拟和 AHSS 的增材制造等新兴主题。这一观点的目的是找出这些不同类型的先进钢材在变形和损伤机制上的相似之处,并利用这些观察结果促进它们的进一步发展和成熟。