摘要:近年来,神经科学研究和相关成果的不断进展以及制造工艺的进步增加了对神经接口系统的需求。脑机接口 (BMI) 已被证明是一种很有前途的诊断和治疗神经系统疾病以及恢复感觉和运动功能的方法。神经记录植入物作为 BMI 的一部分,能够捕获脑信号,并通过发射器将其放大、数字化并传输到体外。设计此类植入物的主要挑战是最大限度地降低功耗和硅片面积。本文对多通道神经记录植入物进行了调查。在介绍各种神经信号特征后,我们研究了主要的可用神经记录电路和系统架构。探索了可用架构的基本模块,例如神经放大器、模数转换器 (ADC) 和压缩块。我们介绍了神经放大器的各种拓扑结构,进行了比较,并探讨了它们的设计挑战。为了在神经放大器的输出端实现相对较高的 SNR,我们讨论了降噪技术。此外,为了将神经信号传输到体外,需要使用数据转换器对其进行数字化,然后在大多数情况下,会应用数据压缩来降低功耗。我们介绍了各种专用 ADC 结构,并概述了主要的数据压缩方法。
能够记录和传输生物信号的可穿戴电子设备可以提供便捷且普遍的健康监测。典型的脑电图记录会产生大量数据。传统的压缩方法无法将数据压缩到奈奎斯特速率以下,因此即使压缩后数据量仍然很大。这需要大量存储空间,因此传输时间也较长。压缩感知提出了解决这个问题的方法,并提供了一种将数据压缩到奈奎斯特速率以下的方法。本文提出基于双时间稀疏性的重建算法来恢复压缩采样的脑电图数据。通过使用schattern-p范数修改基于双时间稀疏性的重建算法并在处理前对脑电图数据进行去相关变换,进一步改善了结果。所提出的改进双时间稀疏性的重建算法在SNDR和NMSE方面优于基于块稀疏贝叶斯学习和Rackness的压缩感知算法。仿真结果进一步表明,所提出的算法具有更好的收敛速度和更短的执行时间。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备在紧凑的表面贴装封装中提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
Broadcom ® ACSL-6xx0 是真正隔离、多通道和双向高速光耦合器。通过专利工艺技术将多个光耦合器集成到单片中。这些设备采用紧凑的表面贴装封装,提供全双工和双向隔离数据传输和通信功能。提供 15 Mbd 速度选项和宽电源电压范围。
结构在运行时可以做到即使某一个模态信息缺失整个网络也能取得不错的效果 , 在多通道情感识别、 语义理解、目标学习等领域取得很好的效果 .尽管如此 , 这类网络相对于任务来说还是相对 “ 具体 ”, 如 果要换一个任务 , 用户就需要修改网络结构包括重新调整参数 , 这使得深度神经网络结构的设计是一 个耗时耗力的过程 .因此研究者们希望一个混合的神经网络结构可以同时胜任多个任务 , 以减少其在 结构设计和训练方面的工作量 .鉴于此 , 研究者开始致力于首先采用大数据联合训练构建出多通道联 合特征分享层 , 然后在识别阶段可以同时进行多任务处理的深度多模态融合结构 .如 Google 的学者 尝试建议一个统一的深度学习模型来自适应地适配解决不同领域、不同数据模态下的多个不同类型 的任务 , 且在特定任务上的性能没有明显损失的模型 [71] .该模型构架请见文献 [71] 的图 2, 由处理输 入的编码器、编码输入与输出混合的混合器、混合输出的解码器 3 个部分构成 , 文献 [71] 的图 3 给 出了这 3 个部分的详细描述 .每一个部分的主体结构类似 , 均包含多个卷积层、注意力机制和稀疏门 控专家混合层 .其中 , 不同模块中的卷积层的作用是发现局部模式 , 然后将它泛化到整个空间 ; 注意力 模块和传统的注意力机制的主要区别是定时信号 , 定时信号的加入能让基于内容的注意力基于所处的 位置来进行归纳和集中 ; 最后的稀疏阵列混合专家层 , 由前馈神经网络 ( 专家 ) 和可训练的门控网络组 成 , 其选择稀疏专家组合处理和鉴别每个输入 .
本文讨论了轻型飞机座舱的主动噪声控制系统。基本系统使用残差信号的相干平均法来产生驱动二次源的信号。该系统的高级版本使用有关噪声波形的先验信息,自适应过程从假设的波形开始(具有足够幅度、相位和频率的正弦信号,甚至低通滤波的参考噪声信号)。在测试单通道系统后,通过额外的模拟验证所实现的噪声抑制,其中考虑了实际飞机座舱的测量声学特性(以脉冲响应为特征)。系统可以扩展到 SIMO(单输入多输出)类型的多通道版本,其中相同的转速计/参考信号在经过足够的延迟(噪声信号通过座舱的声学传播)后驱动八个单通道系统,这些系统与多个增益延迟组合连接,以减少各个通道之间的串扰。
本文讨论了轻型飞机座舱的主动噪声控制系统。基本系统使用残余误差信号的相干平均法来产生驱动二次源的信号。该系统的高级版本使用有关噪声波形的先验信息,自适应过程从假设的波形(具有足够幅度、相位和频率的正弦信号或甚至低通滤波的参考噪声信号)开始。在测试单通道系统之后,通过额外的模拟来验证所实现的噪声抑制,其中考虑了实际飞机座舱的测量声学特性(以脉冲响应为特征)。系统可以扩展到 SIMO(单输入多输出)类型的多通道版本,其中相同的转速计/参考信号经过足够的延迟(噪声信号通过座舱的声学传播)后驱动八个单通道系统,这些系统与多个增益延迟组合连接,以减少各个通道之间的串扰。
本文讨论了轻型飞机座舱的主动噪声控制系统。基本系统使用残余误差信号的相干平均法来产生驱动二次源的信号。该系统的高级版本使用有关噪声波形的先验信息,自适应过程从假设的波形(具有足够幅度、相位和频率的正弦信号或甚至低通滤波的参考噪声信号)开始。在测试单通道系统之后,通过额外的模拟来验证所实现的噪声抑制,其中考虑了实际飞机座舱的测量声学特性(以脉冲响应为特征)。系统可以扩展到 SIMO(单输入多输出)类型的多通道版本,其中相同的转速计/参考信号经过适当的延迟(噪声信号通过座舱的声学传播)后驱动八个单通道系统,这些系统与多个增益延迟组合连接,以减少各个通道之间的串扰。