按钮布局的一致性,机载显控系统的人机工效研究也 逐渐得到了相关领域的重视。为了解决仪表板日益拥 挤的问题,工程师在第 2 代机电伺服仪表的基础上对 飞行仪表进行综合,也对指示相关信息的仪表进行综 合,减少仪表数量;同时将无线电导航和其他经过计 算机加工的指引信息综合进相关的显示器中,形成第 3 代飞机仪表,即综合指引仪表。综合指引仪表不但 可以显示飞机综合的实时状态信息,同时还通过指引 信息告诉飞行员如何正确操纵飞机,以达到预定飞行 状态或目的地 [5] 。第 3 代头盔显示系统首次采用虚拟 成像技术,可直接将虚拟画面投射到驾驶员的面罩 上,配合计算机图像和数据处理运算技术,具备了实 时呈现画面的能力。 以人工智能、大数据为代表的信息技术在军事领 域广泛应用,现代战争形态演变不断突破,向着机械 化、信息化、智能化的方向发展。进入 21 世纪,触 屏及语音交互的方式取代了烦琐复杂的硬件按钮操 作,更为清晰的数字化屏幕也为信息显示提供了更大 的发展空间。第 4 代新型战斗机的机载设备通过更 大、更清晰的数字化屏幕呈现出更加多样的信息内 容。这一时期的人机交互主要通过数字屏幕进行信息 输出,通过语音、触摸屏和简洁的按键等多通道进行 信息输入。未来飞行员头盔的发展趋势是研制功能强 大、集综合性防护于一体的头盔系统,全息投影技术 也会逐渐发展成熟并应用于头盔显示器中 [6] 。历代战 机座舱显控界面见图 1 。 对战机座舱显控系统的发展,各领域的研究人员 针对人因工效、人机交互、座舱显示技术、人机协同 等方面进行了一系列研究。总结 20 世纪 80 年代至今具 有代表性的人物及研究成果,其研究成果引用量较高, 为座舱显控发展提供了理论依据或技术支撑,见表 1 。 军事技术的发展促使战场环境复杂性的大幅提 升,如 F–35 的大屏幕显示器将远不能满足飞行员获 取信息数据流的显示需求,而未来战斗机为了隐身, 会减小座舱空间,进而缩小座舱显示面积 [25] 。座舱内 的系统控制器将尽可能简化,除了保留一些控制飞行 的基本操作杆和少数与安全相关的控制器,其余的操
高的问题,在全面进入 2D 数字屏幕界面阶段后,飞 机座舱只有少数的传统机械仪表被保留,大部分的飞 行信息数据都由计算机分析后再在主飞行显示器 ( PFD )上显示出来,这种获取信息的方式大大增强 了飞行员驾驶的安全性。平视显示器( HUD )是飞机 座舱人机交互界面的另一种形式。 HUD 可以减少飞 行技术误差,在低能见度、复杂地形条件下向飞行员 提供正确的飞行指引信息。随着集成化和显示器技术 的不断进步, 20 世纪末至今,飞机座舱有着进一步 融合显示器、实现全数字化界面的趋势。例如,我国 自主研发生产的 ARJ21 支线客机、 C919 民航客机, 其座舱的人机界面设计均采用触控数字界面技术代 替了大部分的机械仪表按钮 [2] 。 20 世纪 70 年代,美军在主战机上装备了头盔显 示系统( HMDs ),引发了空中战争领域的技术革命。 在虚拟成像技术成熟后,利用增强现实( AR )技术 可以直接将经过计算机运算处理过的数据和图象投 射到驾驶员头盔的面罩上。例如,美国 F-35 战斗机 的飞行员头盔使用了虚拟成像技术,将计算机模拟的 数字化信息数据与现实环境无缝融合,具有实时显示 和信息叠加功能,突破了空间和时间的限制。 20 世纪 90 年代,美国麦道飞机公司提出了“大 图像”智能化全景座舱设计理念,之后美国空军研 究实验室又提出了超级全景座舱显示( SPCD )的概 念,充分调用飞行员的视觉、听觉和触觉,利用头 盔显示器或其他大屏幕显示器、交互语音控制系统、 AR/VR/ MR 系统、手 / 眼 / 头跟踪电子组件、飞行员 状态监测系统等,把飞行员置身于多维度的显示与 控制环境中。此外,在空间三维信息外加上预测信 息的时间维度功能也是未来座舱显示器的发展趋势 [3] 。 2020 年,英国宇航系统公司发布了一款第六代 战斗机的概念座舱,去除了驾驶舱中所有的控制操 作仪器,完全依靠头盔以 AR 形式将操作界面显示 出来。由上述分析可知,未来基于 XR 环境下的虚拟 增强型人机界面将成为飞机座舱人机交互的全新途 径之一。 在学术界,有关飞机座舱人机交互界面的研究也 取得了较为丰硕的成果,其中代表性研究成果见表 1 。
目的:单侧中风的患者通常显示出半剧位的疏忽或较温和的对比性视觉缺陷,但在空间上也有非上侧面化的视觉缺陷。本研究的目的是比较左右半球中风患者的空间偏侧(即相反)和非外边(即一般)视觉缺陷。方法:参与者包括左半球(LH组,n = 20)或右半球(RH组,n = 20)和20个健康对照组的40例慢性单侧中风患者。为了评估对侧缺陷,我们使用了传统的纸笔取消任务(铃铛测试)和侧向目标计算机任务。为了评估非外边缺陷,我们开发了一种新型的大屏幕(173×277厘米)的计算机方法,即“球雨”任务,具有移动的视觉刺激和快节奏的要求,以选择性注意。结果:根据取消任务,没有相反的视觉缺陷。然而,在侧向目标计算机任务中,在双边试验中,RH患者比右侧目标更明显地错过了左侧。这种遗漏分布与对照和LH患者的遗漏分布有显着不同。在评估非侧向注意力的评估中,RH和LH患者的球降雨目标明显超过左侧和右半野对照。结论:基于计算机的评估敏感地揭示了单侧中风中视觉障碍的各个方面。右半球中风的患者表现出非外边的视觉不引起注意力。在右半球中风中,这些症状可能伴随着微妙的对比视觉缺陷,这些缺陷在取消任务中尚未引起人们的注意。
~ 年轻人生活、工作和娱乐的地方 ~ 住友林业株式会社(总裁兼代表董事:三吉敏郎;总部:东京;以下简称“住友林业”)和中央日东地株式会社(总裁兼首席执行官:三宅清;总部:东京;以下简称“中央日东地”)欣然宣布,将在佐治亚州亚特兰大市中心西区开发拥有 250 个单元的多户型社区 NOVEL Blandtown。该项目将由住友林业的全资子公司 Crescent Communities, LLC 与中央日东地的全资子公司 Chuo-Nittochi I LLC 合资开发。住友林业的全资子公司 SFC Asset Management Co., Ltd.(总裁:吉泽裕二郎;总部:东京)将协调合资企业内的沟通。该建筑为七层混合木结构和钢筋混凝土 (RC) 结构。施工计划于 2024 年 11 月开始,已完工部分的租赁将于 2026 年 10 月分阶段开始。整个社区计划于 2027 年 5 月完工。■ NOVEL Blandtown 特点 NOVEL Blandtown 面向活跃的年轻人,他们渴望过上可以在亚特兰大市中心生活、工作和娱乐的城市生活,拥有 250 个单元,从单间公寓到两居室公寓不等。该社区将提供屋顶休息室和游泳池、带木质甲板的中央庭院以及全套其他设施,包括用于观看电影的大屏幕。NOVEL 是 Crescent Communities 的高端市场价多户型产品,在每个公寓住宅、公共空间和整个社区内提供独特的设计特色和设施。对于每个社区,Crescent 都会举办名为“CANVAS”的深入设计和身份识别会议,其中许多学科和利益相关者进行合作,以确保社区具有真实性和吸引力。 NOVEL Blandtown 的开发将充分考虑该地区的历史和特色,使其成为当地社区的一大亮点。该建筑采用混合结构,下层两层为钢筋混凝土,上层五层为木材。与全混凝土结构相比,这种设计降低了成本,并降低了施工期间的二氧化碳排放量。上层采用木框架墙方法,使用标准 2x4 木材,这也有助于储存木材在生长过程中吸收的碳,有助于长期脱碳。