睡眠是促进大脑和身体健康的强大系统。研究表明,睡眠在清除有毒副产物 [ 1–3 ]、突触稳态 [ 4 ]、记忆巩固 [ 5–11 ]、代谢 [ 12 ]、心血管功能 [ 13–16 ] 和身体核心组织更新 [ 17 ] 等多种功能中发挥作用。特别是,非快速眼动 (NREM) 睡眠具有大振幅、低频慢波,被认为可以引导这些有益作用(例如,参见参考文献 18 中的综述)。慢波上行阶段反映神经元活动期,慢波下行阶段反映神经元沉默期 [19],从而协调丘脑皮质睡眠纺锤波和海马尖波涟漪之间的时间相互作用,这已被证明可以支持长期记忆保留 [20,21]。尽管如此,慢波是否是维持大脑和身体健康的不可或缺的驱动力,仍在很大程度上尚未得到探索。为了阐明慢波对大脑和身体功能的功能性作用,需要调节这些振荡。在过去的几年里,听觉刺激已经成为一种有前途的、非侵入性的、可行的方法,可以在深度睡眠期间选择性地调节慢波 [9,22–24]。然而,由于刺激方案多种多样,导致对行为结果的发现不一致(例如,参见参考文献25 中的综述),并且缺少对这些方法在选择性增强或减少慢波方面的有效性的比较。Ngo 等人[9] 首次报告,针对正在进行的慢波的上升阶段似乎对改善隔夜记忆巩固很重要。另一方面,下行阶段刺激则会干扰慢波以及陈述性记忆和运动记忆的巩固[9, 26]。然而,除了选择合适的听觉刺激目标阶段外,序列中的刺激数量也是可变的,例如,双音调刺激方案之后是后续刺激中断[9, 23],或窗口方法,其中听觉刺激仅在预定长度的 ON 窗口内呈现[7, 8, 22]。除了上述在一定程度上依赖于慢波相位和/或存在(闭环刺激)的程序外,完全开环听觉刺激也已被证明可以增强慢波[11,27]。需要考虑的另一个参数是刺激的音量以及刺激是通过耳机还是扬声器播放。此外,一些研究使用50至60 dB之间的固定音量[9,23,28],或30至60 dB之间的个体和/或自适应音量[10,11,22]。尽管已经应用了许多刺激方法,但听觉刺激仍处于起步阶段。因此,听觉刺激的全部潜力尚未得到充分挖掘,为此需要对其效果有更深入的了解。此外,目前尚不清楚听觉刺激效果是否在整个睡眠周期内保持稳定,以及刺激效果是否在几秒钟的刺激中保持不变。为了促进对听觉慢波调制的理解,我们在此提出了一种新方法,使用窗口 10 秒刺激开启(播放听觉刺激)然后 10 秒关闭(不播放听觉刺激)方法比较单个睡眠期间的不同听觉刺激条件。这种夜间设计消除了任何