摘要CRISPR/CAS基于创新的繁殖技术现在为植物育种者提供了前所未有的机会,可以产生遗传变异的繁殖。由于CRISPR/CASPR/CASGENOME编辑的最新进展,能够有效地靶向大多数作物变化的能力表明,农业进步可能会加快。关键字:CRISPR/CAS9,基因组编辑,植物育种,小麦,大米,基因编辑(GE)Technology CRISPR/CAS(定期散布的短篇小说重复/CRISPR相关蛋白),通常被称为“遗传剪刀”,该公司于11年前首次发表,该公司在Emmanielle anderna eylna eylna(Jenn eylna)(遗传剪刀)首次发表( )。如果认真对待道德问题,那么在治疗应用处于最前沿的许多领域中,CRISPR/CAS技术的应用可能是革命性的。div> div> div> div> div> div> div> div> div> div> div> div> DOUDNA和CHARPENTIER于2020年因开发促进“重写生命守则”的技术的重大贡献而获得了诺贝尔化学奖。crispr/cas9目前是植物基因组最常见的编辑系统(Invens等,2022),这是因为它仅需要通用CAS9核酸酶的表达和一个(或更多)单个指南RNA(SGRNA)(SGRNA),该指南(SGRNA)专门设计以使其与某些靶基因序列相匹配,从而使其与某些dna相匹配。我们所生活的时代以全球人口前所未有的增长率为标志。目前估计的世界人口为77亿,到2030年预计到2030年,到2050年将飙升至88亿(Bhatta and Malla,2020年)。这一挑战引发了人们对更高量的食物(约50%)的不愉快需求,这对当前有限的农业生产率施加了巨大负担。气候变化通过升高大气温度,增加干旱并增加土壤盐度来加剧这种情况,所有这些都降低了全球农业生产力并威胁粮食安全(Hazman等,2022)。此外,发现气候变化使植物更容易受到害虫和病原体的影响,这显着对作物产量和质量产生了负面影响(Kim等,2022)。因此,弥合此差距的最有效策略是每个土地面积单位(例如,英亩)提高生产力。
进行准确的亚季节预测仍然是科学界的挑战(White等人2022)。中期时间范围位于中期每日天气预报和季节性预测之间(Vitart等人,2017年)。为了改善季节前的前提,已经做出了巨大的努力来理解不同的过程,相互作用和可预测性的来源(Domeisen等人。,2022; Robertson&Vitart,2019年; White等。,2022)。中季可预测性与大气,海洋和土地过程有关(Robertson&Vitart,2019年)。亚季节范围最重要的预性能力来源如下:Madden-Julian振荡(Lau&Waliser,2011; Vitart等人,2017年),由于其对热带和外界全球天气的影响(Cassou,2008; Deflorio等人,2019年);土壤水分(Koster等人,2010年),因为这会影响较低的大气温度和局部预言(Domeisen等人,2022; Wei&Dirmeyer,2019年);雪覆盖(Lin&Wu,2011年),尤其是极地和中纬度地区(Penny等人,2019年);海洋条件(Woolnough等人,2007年),显示出在某些地区增强降水和温度预测的能力(Subramanian等人,2019年);以及对降水和温度的影响滞后的strato-everhere(Butler等人,2019年)。,2020年;纽曼等人。,2003年; Rashid等。,2011年; Vitart,2014年)。,2022; Mariotti等。改善亚季节预测还与模型物理的改善有关,通过纳入了地球系统的辅助过程和许多组成部分,例如海洋和海冰,以及在与前面提到的可预测性不同来源之间相互作用相关的初始条件下的不确定条件(Merryfield等。下午预测变得更加准确(Robertson&Vitart,2019年)。NWP的预测在过去几十年中有所改善(Magnusson&Källén,2013年)。NWP模型已从概率的方法转变为概率方法。的确,集合(概率)预测通过为预测变量产生一组概率来帮助捕捉大气混乱(Palmer,2000)。因此,一个概率的预测通过更大的结合预测提供了最有可能的情况和与之相关的不确定性,从而可以更自信地验证亚季节预测。由于上述所有努力,亚季节合奏预测已经展示了其潜在的,以提供有价值的预测和早期对重大气候和天气事件的警报(Domeisen等人,2018年; Robertson&Vitart,2019年)。这些
上下文。在阳光恒星的宜居区内温暖的岩石外球星是当前和将来的任务的青睐目标。the-Ory表示这些行星在形成时可能会湿润,并且可以居住足够长的时间来发展。但是,目前尚不清楚这些世界上的早期海洋在多大程度上会影响潜在的生物签名的反应。目标。在这项工作中,我们测试了在计划中的生命任务框架内,在温暖,水丰富的大气中生物签名的气候化学响应,维护和可检测性。方法。我们使用耦合的气候化学柱模型1d terra来模拟地球上的行星参数和进化,在与太阳不同的距离下,行星大气的组成。,我们以10%的步骤将传入的启发提高了50%,对应于1.00至0.82 au的轨道。在表面上使用和没有现代地球的生物量通量进行。 使用大蒜辐射转移模型产生所有模拟的理论发射光谱。 然后使用 Lifesim向这些光谱的观察添加噪声并模拟观察结果,以评估如何区分地球样行星的生物和非生物气氛。 结果。 增加的启动导致地表水蒸气压力从0.01 bar(1.31%,s = 1.0)升至0.61 bar(34.72%,s = 1.5)。 在生物情景中,臭氧层生存,因为氧化物与氮氧化物的氧化物反应阻止了净臭氧化学水槽的增加。。使用大蒜辐射转移模型产生所有模拟的理论发射光谱。Lifesim向这些光谱的观察添加噪声并模拟观察结果,以评估如何区分地球样行星的生物和非生物气氛。结果。增加的启动导致地表水蒸气压力从0.01 bar(1.31%,s = 1.0)升至0.61 bar(34.72%,s = 1.5)。在生物情景中,臭氧层生存,因为氧化物与氮氧化物的氧化物反应阻止了净臭氧化学水槽的增加。的甲烷大大降低了,比地球高20%的强化。使用Lifesim进行的合成观测,假设孔径为2.0 m,并且解决功率为R = 50,表明臭氧特征在9.6 µm处的臭氧特征可靠地可靠地指向10 parsecs中的系统的O 2的地球样生物圈表面通量。由于H 2 O轮廓不同而导致的大气温度结构的差异也使观测值在15.0 µm处可以可靠地识别CH 4表面通量等于地球生物圈的行星。将光圈增加到3.5 m,并将仪器吞吐量增加到15%,将此范围增加到22.5 PC。