摘要 量子网络通过执行纠缠分布促进了许多应用,包括安全通信和分布式量子计算。对于某些多用户量子应用程序,需要访问共享的多部分状态。我们考虑设计以更快的速率分发此类状态的协议的问题。为此,我们提出了三种利用多路径路由来提高多用户应用程序分发速率的协议。这些协议在具有 NISQ 约束的量子网络上进行评估,包括有限的量子存储器和概率纠缠生成。模拟结果表明,与单路径路由技术相比,开发的协议实现了多部分状态分发速率的指数级增长,在研究的案例中最大增长了四个数量级。此外,对于较大的用户集,分发速率的相对增加也被发现有所改善。当在缩小的真实世界拓扑中测试协议时,发现拓扑对协议实现的多部分状态分发速率有显著影响。最后,我们发现多路径路由的好处在较短的量子存储器退相干时间和中间的纠缠生成概率值时最大。因此,所开发的协议可以有益于 NISQ 量子网络控制和设计。
覆盖引导模糊测试 (CGF) 已成为最流行和最有效的漏洞检测方法。它通常被设计为自动化的“黑盒”工具。安全审计员启动它,然后只需等待结果。然而,经过一段时间的测试,CGF 很难逐渐找到新的覆盖范围,因此效率低下。用户很难解释阻止模糊测试进一步进展的原因,也很难确定现有的覆盖范围是否足够。此外,没有办法交互和指导模糊测试过程。在本文中,我们设计了动态定向灰盒模糊测试 (DDGF),以促进用户和模糊测试器之间的协作。通过利用 Ball-Larus 路径分析算法,我们提出了两种新技术:动态自省和动态方向。动态自省通过编码和解码揭示了路径频率分布的显著不平衡。基于自省的洞察力,用户可以动态地指导模糊测试器实时将测试重点放在选定的路径上。我们基于 AFL++ 实现 DDGF。在 Magma 上的实验表明,DDGF 能够有效帮助模糊测试器更快地重现漏洞,速度提升高达 100 倍,而性能开销仅为 13%。DDGF 展示了人在回路中模糊测试的巨大潜力。
最近,对不同深度神经网络(DNNS)架构的平行杂交模型的持续发展,越来越多的兴趣激增,以保持有用寿命(RUL)估计。在这方面,本文在文献中的第一次介绍了一种新的基于Hybrid DNN的框架,用于RUL估算,称为嘈杂的多径平行混合模型,用于剩余有用的寿命估计(NMPM)。提议的NMPM框架是三个平行路径的编写,第一个使用了一个嘈杂的双向长短术语记忆(BLSTM),用于提取时间特征并学习在两个方向,正向和后门中学习序列数据的依赖。第二个平行路径采用嘈杂的多层感知器(MLP),由三层组成以提取不同特征类别的层。第三个平行路径利用嘈杂的卷积神经网络(CNN)来提取特征的组成类。然后将三个平行路径的串联输出送入嘈杂的融合中心(NFC)以预测RLU。提出的NMPM已根据嘈杂的训练机制进行了培训,以增强其泛化行为,并增强模型的整体准确性和鲁棒性。使用NASA提供的CMAPS数据集对NMPM框架进行了测试和评估,该数据集说明了卓越的性能与最先进的对应物相比。
Q10。 在第一个激发氢原子的激发状态下计算电子的轨道周期。 ans: - 对于基态,对于第一个激发状态,n = 1,n = 2现在,tnαn 3 t 2 = 2 3 t 1 1 1 3 t 2 = 8t 1 I.T 2 =在基态轨道周期的8倍。 Q11。 通过12.5 eV能量的电子束激发基态的氢原子。 从其激发状态中找出原子发出的最大线数。 ans。 基态的能量E 1 = - 13.6 EV能量=激发状态下的12.5 eV能量,-13.6 + 12.5 = - 1.1 eV,但是,E n = --- 13.6 = -1.1,然后我们将获得n = 3。 n 2因此,光谱线= 3 kVs ziet chandigarhQ10。在第一个激发氢原子的激发状态下计算电子的轨道周期。ans: - 对于基态,对于第一个激发状态,n = 1,n = 2现在,tnαn 3 t 2 = 2 3 t 1 1 1 3 t 2 = 8t 1 I.T 2 =在基态轨道周期的8倍。Q11。 通过12.5 eV能量的电子束激发基态的氢原子。 从其激发状态中找出原子发出的最大线数。 ans。 基态的能量E 1 = - 13.6 EV能量=激发状态下的12.5 eV能量,-13.6 + 12.5 = - 1.1 eV,但是,E n = --- 13.6 = -1.1,然后我们将获得n = 3。 n 2因此,光谱线= 3 kVs ziet chandigarhQ11。通过12.5 eV能量的电子束激发基态的氢原子。从其激发状态中找出原子发出的最大线数。ans。基态的能量E 1 = - 13.6 EV能量=激发状态下的12.5 eV能量,-13.6 + 12.5 = - 1.1 eV,但是,E n = --- 13.6 = -1.1,然后我们将获得n = 3。n 2因此,光谱线= 3 kVs ziet chandigarh
3 .多径对星载导航接收机的影响 ...............................11 3.1 PRN 测距和 DLL 操作 .......................11 3.2 PRN调制信号描述 .......................16 3.3 相干PRN接收机 ...............................17 3.3.1 无多径情况下的相干 DLL 鉴别器曲线 ....。。。。。。。。。。。。。。。。。。。。。。。。........18 3.3.2 多径情况下的相干 DLL 鉴别器曲线 ............。。。。。。。。。..............21 3.3.3 存在多径时的 PLL 操作 .........26 3.4 非相干PRN接收机 ...........................31 3.4.1 无多径情况下的非相干DLL鉴别器曲线 .........................31 3.4.2 多径存在下的非相干 DLL 鉴别器曲线 ...........................32 3.4.3 存在多径时的 PLL 操作 ..........35 3.5 模拟结果 ..................。。。。。。。。。。。。。。。42 3.5.1 CIA 代码。。。。。。。。。。。。。。。。。。。。................42 3.5.2 具有窄相关器间距的 CIA 码 .......。。。。56 3.5.3 P 代码。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。73
先进的航空电子系统:机载通信系统(甚高频和高频收发器、甚大线模式;导航通信系统;紧急无线电示位标);电传飞行控制(FBW 飞行控制特性、安全性和完整性、冗余度和故障生存、数字化实施和问题、飞行控制软件功能);飞机综合系统(几乎所有飞机姿态和飞行路径指挥和控制参数的综合系统以及飞行指引仪和自动驾驶系统的模式报告、实时软件和先进的分布式架构)。
摘要:镍烯丙基复合物是丁二烯(BD)1,4-会员聚合物的催化剂。协调链转移聚合(CCTP)尚未使用这些系统评估。我们在这项工作中报告了丁二烯在存在π-甲基镍(II)三氟乙酸(TFA)和MG N BUET或ALET 3作为链转移剂(CTA)案例研究的情况下的聚合。反应遵循一阶动力学与单体相比。在CTA存在的情况下证明了链的转移,并形成带有共轭二烯部分的多丁二烯。这允许通过重新插入链条一锅访问分支多丁二烯。多丁二烯氢化后,通过13 c NMR定量分析分支,并评估了其对氢化样品的热性能的影响,特别是对于无法定量确定的低度分支。暂时提供了催化循环的完整描述。如果在乙烯聚合过程中在文献中描述了类似的串联过程,据我们所知,这是迄今为止报道的唯一用于共轭二烯的系统,导致分支多丁二烯,从而扩展了CCTP过程的应用范围。■简介
2024年10月16日 — (3)国防部健康官、国防政策局局长、国防采购、技术和后勤局局长(以下简称“部指定”)......规格:圆柱型、圆头圆柱型、子弹型、锥形。一套5个球形,柄直径3毫米......
NICE 在其指南中没有明确规定治疗的最大线数。因此,考虑到 NICE 推荐的多种药物,治疗线数基于推荐药物的不同作用机制数量(表 2)。ICB 已认可并采纳区域药物优化委员会 (RMOC) 提出的建议,该建议建议改用具有新作用机制的高成本药物。目前的途径已根据药物的药理特性或作用方式将推荐的用于治疗 AD 的靶向治疗药物分为三个不同的组(表 2)。因此,AD 的靶向治疗被限制为最多三种治疗线。当治疗线数超过最大线数时,患者应退出当前途径并恢复标准治疗。如果负责的临床医生认为患者仍可从进一步的 HCD 治疗中受益,则需要通过个人资金申请 (IFR) 向患者的 ICB 申请资金。摘自 NEL IFR 政策“为了支持基于对标准治疗无反应的 IFR,IFR 小组通常需要确信患者无法对常规治疗作出反应或无法获得常规治疗是一种真正的特殊情况,这超出了疾病的自然病史,并且不是相关疾病患者群体的特征”。NICE 委员会认为,在决策过程中最好考虑序列的成本效益分析。但它承认,没有关于序列有效性的临床数据,使用各种治疗序列的临床理由将针对每个人进行个性化。因此,委员会得出结论,治疗序列的分析将是不确定的。预计这种途径将带来成本压力,这就是为什么最多选择三种治疗方法的原因。然而,在利用最佳价值药物的举措背景下,有机会通过该途径正式实现具有成本效益的处方。
图1胰腺成像发现(a)淀粉酶高度时的对比CT:在内部观察到晦涩,增大,较差的对比区域(箭头),晦涩的直径为40 mm,部分胰腺导管在内部观察到部分胰腺。同一位点在早期层中有效较小,并且在后期逐渐增加。 (b)Pembrolizumab最终给药后5个月对比CT扫描:胰腺尾巴尾巴的改善(箭头)。 (c)MRCP:胰腺头部的普通胆管被狭窄(箭头),并在上游膨胀。主要的胰管在胰腺头上看不到,而是在胰腺体内膨胀。 (d)EUS:胰体具有低回波区域,直径为12.9 x 9.5毫米(箭头)。 (e)EUS:在25.3毫米的胰腺尾巴(箭头)的25.3毫米内有一个低回波区域。 FNA是从同一地点经频道进行的。