Wernicke的区域在一个半球中更加发达,负责言语象征和相关的智力。优势与95%的人口的语言有关。Wernicke的区域在主要半球中可能会大50%。
基因选择性转录因子通过与其靶基因调节区域内的特定DNA元件结合(1)。但是,并非完全定义此DNA结合的序列要求。几个参数,例如蛋白质 - 蛋白质相互作用与相邻结合的因素,DNA结构的影响(弯曲等)。),重要的是,结合位点与认知因子的比率确定给定转录因子是否可以有效地与相应的结合位点相互作用。体外和大概也在体内也是如此,对于确定转录因子是否会与其最佳识别序列的变体结合,因此,它的基因调节。在这些考虑因素中提示,我们询问是否存在一种蜂窝机制,该机制是否存在在转录因子活动和可用目标位点的繁琐之间保持平衡。对AP-1家族成员的特征良好转录因子C-Jun进行了实验(2-4)。包含AP-1结合位点的启动子是C-Jun调节的目标。C-Jun的活性受到多种机制的紧密控制,并且对蛋白质的异常调节会导致恶性转化和致癌作用(5)。在这项研究中,我们描述了一种机制,该机制通过改变其磷酸化态的DNA结合活性,取决于细胞中存在的C-Jun结合位点的浓度。这种机制可以用来设置和微调C-Jun与其结合位点的比率。有趣的是,与这种现象有关的磷酸化位点与以前据报道经历信号依赖性去磷酸化相同。
抽象造血是一个连续的过程,其中前体细胞在整个生命中都会增殖和分化。但是,控制这一过程的分子机械尚未明确定义。编码DNA结合同源域的含同源物基因是一个高度保守的基因网络。它们是在具有位置层次结构的发育胚胎中表达的簇中组织的。我们已经分析了四个人HOX基因座在红血病,叶虫细胞和单核细胞系中的表达,以研究人类HOX基因的物理组织是否反映了造血细胞分化过程中涉及的调节性层次结构。我们的结果表明,代表血液 - 诗分化的各个阶段的细胞显示出HOX基因表达的差异模式,并且HOX基因在可能包括整个基因座的块中协调或关闭。在分析的所有线路中,整个HOX4基因座都保持沉默,几乎所有HOX2基因在红血球细胞中都活跃,并在髓样限制的细胞中关闭。我们的观察结果提供了有关HOX基因调控的信息,并表明这些基因的坐标调节可能在血液早期阶段的谱系确定中起重要作用。
背景:使用文本报告向父母和对赔偿权提出异议的法律专业人士传达患有长期缺氧缺血性损伤 (HII) 的儿童的双侧、对称性和区域性皮质脑萎缩可能很困难。使用标准的横截面图像向外行人解释双侧、区域性脑成像也具有挑战性。大脑表面的单一平面图像,就像从地球仪中得出地球地图一样,可以通过磁共振成像 (MRI) 扫描的曲面重建生成,即墨卡托地图。外行人在未经事先培训的情况下识别异常“墨卡托脑图”的能力需要在非医疗环境中使用前进行评估。目的:确定外行人在未经事先培训的情况下检测异常儿童墨卡托平面脑图的灵敏度和特异性。方法和材料:向 111 名参与者分别提供 10 张墨卡托脑图。这些地图包括 5 个 HII、1 个皮质发育不良和 4 个正常病例。参与者需要识别异常扫描。计算了总体和参与者亚组的敏感性和特异性。结果:总体敏感性和特异性分别为 67% 和 80%。普通放射科医生(n = 12)的敏感性和特异性分别为 91.2% 和 94.6%。外行人(n = 54)的敏感性为 67%,特异性为 80%。结论:放射科医生的高特异性和敏感性验证了该技术在区分皮质病理异常扫描方面的有效性。外行人使用墨卡托地图识别异常大脑的高特异性表明,这是一种向外行人展示儿童 HII 皮质 MRI 异常的可行沟通工具。
阿尔茨海默氏病(AD)是一种慢性神经退行性疾病,其特征是灰色和白质损害以及认知/行为表现的特定模式。小脑也与AD的病理生理有关。由于已知小脑具有强大的功能连通性(FC),因此可以假设将其纳入与AD的认知表现相关的内在FC网络中。在本研究中,选择小脑齿状核,最大的小脑核和大脑皮层的主要输出通道作为感兴趣的区域,以测试潜在的小脑脑FC的改变,并与AD患者组中患者的患者的记忆障碍相关。与对照组相比,AD患者在齿状核和侧向颞叶区域之间的FC增加。这项研究表明,AD中的记忆力较低可能与特定小脑皮质功能模块中的FC改变有关,因此表明小脑对AD病理生理学和典型记忆功能障碍的贡献。
摘要 - 超声(US)图像中胎儿大脑皮层下区域的生长可以帮助鉴定出异常发育的存在。手动分割这些区域是一项艰巨的任务,但是最近的工作表明,它可以使用深度学习自动化。然而,应用验证的模型来表现出徒手的美国量通常会导致由于获取和对齐的巨大差异而导致性能下降。在这项工作中,我们首先证明测试时间适应(TTA)可用于在存在真实和模拟域移动的情况下改善模型性能。我们通过将规范地图集作为解剖学的先验提出了一种新型的TTA方法。在存在各种域移位的情况下,我们基准了不同TTA方法的绩效,并证明了我们提出的方法带来的改进,这可能会进一步促进对胎儿脑发育的自动监测。我们的代码可从https://github.com/joshuaomolegan/ tta-for-3d-fetal-subcortical-sementation获得。关键字 - 测试时间适应,超声,分段
胎儿大脑巨细胞病毒感染的补充数据:怀孕期间摄入阿司匹林会削弱后代的神经发育发病机制 Sarah Tarhini 1 , Carla Crespo-Quiles 1# , Emmanuelle Buhler 1 , Louison Pineau 1 , Emilie Pallesi- Pocchard 1 , Solène Villain 1 , Saswati Saha 2 §, Lucas Silvagnoli 1 , Thomas Stamminger 3 , Hervé Luche 4 , Carlos Cardoso 1 , Jean-Paul Pais de Barros 5 , Nail Burnashev 1 , Pierre Szepetowski 1 *, Sylvian Bauer 1 * §当前地址: #Alicante Neuroscience Institute, Miguel Hernandez University, CSIC, San Juan de Alicante, Alicante, Spain; 生理学和病理生理学研究所,约翰内斯古腾堡大学,美因茨,德国; §Argenx France SAS, 92130 Issy-Les-Moulineaux, France 1 INMED、INSERM、艾克斯-马赛大学,法国马赛。 2 TAGC、INSERM、艾克斯马赛大学图灵生命系统中心,法国马赛。 3 德国乌尔姆大学病毒学研究所。 4 CIPHE、PHENOMIN、INSERM、CNRS、艾克斯-马赛大学,法国马赛。 5 DiviOmics 平台,UMS 58 BioSanD,法国第戎勃艮第孔泰大学。 *通讯作者:Bauer 博士,地中海神经生物学研究所 (INMED)、Inserm UMR1249、Parc Scientifique de Luminy, BP13, 13273 Marseille Cedex 09, France。电话:+33 (0)4 9182 8156;电子邮件:sylvian.bauer@inserm.fr Szepetowski 博士,地中海神经生物学研究所 (INMED),Inserm UMR1249,Parc Scientifique de Luminy,BP13,13273 Marseille Cedex 09,法国。电话:+33 (0)4 9182 8111;电子邮件:pierre.szepetowski@inserm.fr
摘要 静息心率可能会增加患心血管疾病 (CVD) 和其他不良心血管事件的风险。虽然脑干对心率的自主控制已得到充分证实,但人们对高级皮质和皮质下大脑区域的调节作用知之甚少,尤其是在人类中。这项研究试图描述预测健康成年人普遍心率变化的大脑网络。我们使用专为复杂、高维数据集设计的机器学习方法,从 fMRI 测量的全脑血流动力学信号中预测瞬时心动周期 (心跳间隔) 的变化。基于任务和静息状态的 fMRI 以及外周生理记录取自两个包含个体内大量重复测量的数据组。我们的模型能够可靠地从个体内和个体间的全脑 fMRI 数据中预测瞬时心动周期,在参与者内部测量时预测准确率最高。我们发现,皮层和皮层下脑区网络(其中许多与内脏运动和内脏感觉过程相关)是心动周期变化的可靠预测因素。这为脑-心相互作用提供了更多证据,并朝着开发临床适用的脑对心血管疾病风险贡献的生物标记物迈出了一步。
大脑复杂性 (BC) 已成功应用于研究健康和疾病状态下的脑电图信号 (EEG)。在本研究中,我们采用递归熵来量化与运动神经生理学相关的 BC,通过比较静息状态和骑车运动下的 BC。我们测量了 24 名健康成年人的脑电图,并将电极放置在大脑左右两侧的枕叶、顶叶、颞叶和额叶部位。我们根据骑车和静息状态下的脑电图测量结果计算了递归熵。对于所有分析的大脑区域,静息状态下的熵都高于骑车状态下的熵。这种复杂性的降低是骑车过程中重复运动的结果。这些运动会导致持续的感觉反馈,从而降低熵和感觉运动处理。
1麦康奈尔脑成像中心,生物医学工程系,医学院,计算机科学学院,神经科学学院 - 蒙特利尔神经学院(MNI),麦吉尔大学,蒙特利尔大学,蒙特利尔,加拿大魁北克; 2米拉 - 加拿大魁北克蒙特利尔的魁北克人工智能研究所; 3西部神经科学研究所,西部大学,伦敦,加拿大安大略省; 4加拿大安大略省伦敦西部大学计算机科学系; 5加拿大安大略省伦敦西部大学统计与精算科学系; 6加拿大魁北克蒙特利尔康科迪亚大学心理学系; 7德国莱比锡Max Planck人类认知与脑科学研究所神经病学系; 8美国德克萨斯州达拉斯的UTSW高级成像研究中心; 9伊利诺伊州伊利诺伊州伊利诺伊州乌尔巴纳大学的生物工程系; 10 N.1 N.1卫生研究所睡眠与认知中心电气与计算机工程系,新加坡新加坡国立大学卫生与数字医学研究所;和11个共济失调中心,神经解剖学和小脑神经生物学实验室,马萨诸塞州综合医院和哈佛医学院,美国马萨诸塞州波士顿,美国马萨诸塞州波士顿