关于莫桑比克的经济活动的经济活动,世界银行表示,过去五年的通货膨胀在莫桑比克的最高水平达到了最高,总计为10.82%,受到新鲜农产品供应的洪水的影响以及公共客运票价的增加。全球石油和食品价格上涨导致通货膨胀压力以及稳定的名义和实际汇率有助于最大程度地减少价格压力。莫桑比克政府正在采取重要步骤来恢复经济状况并刺激私营部门的增长,包括经济加速计划(EAP)。在本月,向金融行动工作组(FATF)提交了一份报告,该工作组被授权促进抗击洗钱和恐怖主义的斗争,以从灰色名单中删除莫桑比克。为了从灰色名单中删除,莫桑比克将必须对非政府组织进行国家风险评估,并为受益人安装身份证系统,并制定有关洗钱和恐怖主义的国家和国际合作行动。粮农组织食品价格指数(食品和农业组织)继续下降,标志着连续第九次减少,以126.9 pp的速度代表,下降了2.8 pp,标志着连续第12次下降。在谷物价格指数的具体情况下,3月份的138.6 pp之间,与上个月相比,降低了8.2点。植物油价格指数反映了3月份的价值131.8 pp,降低了4.1 pp,导致大豆油和葵花籽油的价格下降。3月份的肉价为113.0,家禽肉掉了太多,而大型出口公司的进口限制受到了流感爆发的影响。该指数的降低是连续第四次降低。三月的糖价格指数平均为127.0 pp。DADOS RELATIVOSAOMêsdeMarçode2023
未精制(原)糖、经验证的可持续未精制(原)糖、糖蜜、用于生产乙醇的糖蜜、用于动物饲料的糖蜜、用于蒸馏的糖蜜、用于食品配料的糖蜜、结晶果糖粉、葡萄糖粉、一水葡萄糖、高果糖玉米糖浆、液体葡萄糖糖浆、麦芽糊精粉、麦芽糖浆、乙酰磺胺酸钾 (Ace-K)、阿斯巴甜、糖精钠、三氯蔗糖、木糖醇、天然玉米淀粉、改性玉米淀粉、玉米粉、天然木薯淀粉、木薯淀粉、小麦淀粉、苹果、葡萄、柠檬、芒果、橙子、梨、菠萝、番茄、芦荟、杏、香蕉、樱桃酸、番石榴、橘子、胡萝卜、椰子、百香果、桃子、椰果、草莓、碱化脂肪还原可可粉、去皮花生碎、碎花生、去壳芝麻、花生粉、花生酱/花生酱、花生、芝麻、花生碎、全澳洲坚果、无水乳脂、黄油、酪蛋白粉、全脂奶粉、全脂奶粉、脱脂奶粉、甜乳清粉、乳清蛋白浓缩物、全脂奶粉、AFP 卷、HDPE 树脂、LDPE 树脂、LLPDE 树脂、PP 树脂、PET 树脂、PS 树脂、不透明白色 r、rPET 薄片、rPET 树脂、rHDPE 树脂、rPP 树脂、玻璃瓶、纸、大卷、牛磺酸、酸度调节剂、无水柠檬酸、柠檬酸粉、一水柠檬酸、苹果酸、苹果酸粉、柠檬酸钠、柠檬酸钠粉末、抗坏血酸、抗坏血酸粉末、丙酸钙、丙酸钙粉末、谷氨酸钠、味精粉末、山梨酸钾、山梨酸钾粉末、苯甲酸钠、苯甲酸钠粉末、羧甲基纤维素 (CMC)、角叉菜胶、改性淀粉、天然玉米淀粉、果胶、木薯淀粉、黄原胶、青苹果香精、清凉薄荷、大米基葡萄糖糖浆、大麦、木薯片、可溶性干酒糟 (DDGS)、玉米、棉花、柑橘颗粒、鱼粉、大米、大豆、豆粕、大豆油、葵花籽油、硝酸铵、混合 NPK、NPK、尿素、甘蔗渣、甘蔗渣颗粒、椰子壳、椰子壳、混合热带草颗粒、秸秆颗粒、棕榈仁、稻壳、稻壳颗粒、木材颗粒、空果串、VIVE 验证的可持续生物质、传统能源、激励能源(可再生)、VIVE 或 I-REC 验证的可持续能源信用、含水乙醇、无水乙醇、燃料级乙醇、工业级乙醇、中性级乙醇、太阳能……
食品生产商和零售商有义务向Sumers提供正确的食品信息;但是,尽管国家和国际立法,食品标签经常包含有关食品组成,质量,地理起源和/或加工的虚假或误导性陈述。食品身份验证非常具有挑战性,需要高度选择,灵敏,准确,可重复和鲁棒的分析方法。这本特刊的食品,包括十项研究和两篇评论文章,重点介绍了食品认证的最新进展,并清楚地表明,没有一种方法适合涵盖食品真实性的各个方面。毫无疑问,靶向核或线粒体(MT)标记的基于DNA的方法在食品中物种和/或品种的识别和分化中起着关键作用。实时PCR仍然是对多样化食品商品的身份验证的首选技术,这是由于其高特异性,敏感性和可重复性。在肉类产品中的物种身份验证也是如此,实时PCR是最广泛使用的基于DNA的技术之一,主要针对mtDNA [1];但是,使用实时PCR的肉类或任何其他食物的定量构成因准确制备参考混合物作为方法开发的校准剂而受到质疑。DNA标记物的选择也很具有挑战性,尤其是当目的是定量分析时。尽管mtDNA在敏感性和特定城市方面具有优势,但其可变拷贝数是定量方法的缺点。因此,开发了针对ROE鹿乳铁蛋白基因的Taqman实时PCR分析,以在肉类产品中进行定量测定[2]。通过确定型号肉类混合物和型号香肠中的Roe Deer含量来对该测定进行验证,然后将其应用于商业肉类产品的分析[2]。然而,方法标准化需要通过实验室间试验进行评估[3]。因此,在一项实验室间戒指试验中测试了ROE鹿的实时PCR分析,其中包括来自奥地利,德国和瑞士的14个实验室。该测定法证明了其适用于检测和量化生肉样品中的Roe鹿以检测食物掺假,尽管仍需要进一步的试验来验证其在热处理的模型食品中的应用[4]。在植物物种身份质量中也证明了实时PCR的应用,在一个特别具有挑战性的基质(可挑战油)中。第一次提出了新的质量和定量PCR分析来验证摩洛哥坚果油[5]。Argan Oil是一种高级产品,在全球范围内将其化妆品和食品级商业化,可能与其他植物油融合在一起。为了解决这个问题,通过使用归一化∆ CQ方法来估计用橄榄油或大豆油估算摩洛哥坚果油的潜在掺假的两个实时PCR校准模型,然后用盲混合物在内部进行验证[5]。DNA条形码针对细胞色素C氧化酶亚基I(COI)基因,作为一个相对保守的区域,物种之间具有足够的变化,已广泛应用
摘要 从埃及土壤和食物来源中分离出产生磷脂酶 C (PLC) 的细菌。通过 16S rRNA 测序,将一种强效假单胞菌分离物鉴定为 P. fluorescens MICAYA,并以基因登录号 (OQ231499) 记录在 GenBank 中。通过 Plackett Burman 和中心复合设计进行优化发现,豆粕、酵母提取物、NaCl 和蛋黄显著提高了磷脂酶 C 的产量。Michaelis-Menten 动力学确定了 K m 为 0.4 mg/ml 蛋黄,V max 为 287 U/ml。Box Behnken 设计确定了 395 U/ml 磷脂酶 C 产量的最佳 pH 值为 6.5、0.55 g/l CaCO 3、1.05% 蛋黄、48.5°C。该磷脂酶对人成纤维细胞表现出低细胞毒性。磷脂酶 C 浓度(0.2-1 ml)可有效脱胶芝麻、洋甘菊、西洋菜、荷荷巴油、橄榄、黑种草和蓖麻油。磷脂酶 C 浓度为 0.4-0.8 ml/L 时磷脂减少率最高。荧光假单胞菌磷脂酶 C 提供了一种可生物降解的化学脱胶替代方法。总之,统计优化成功提高了磷脂酶 C 的产量。表征发现该酶在碱性 pH、中等温度和蛋黄底物下效果最佳。已证明多种植物种子油具有生物脱胶能力。进一步固定化和蛋白质工程可以提高磷脂酶 C 的工业效用。关键词:磷脂酶 C;荧光假单胞菌;培养基优化;油脱胶;酶动力学。 _____________________________________________________________________________________________________________ 1. 简介 磷脂酶 (PLC) 水解磷脂骨架中的磷酸二酯键,根据所涉及的具体磷脂种类产生 1,2-二酰基甘油和磷酸单酯。微生物磷脂酶是催化磷脂水解的酶。由于其广泛的底物特异性、温和条件下的高活性以及易于大规模生产,它们具有广泛的工业应用 [1]。磷脂酶已被用于修改磷脂结构以生产特定脂质、脱胶植物油、合成化妆品成分、改善面团的烘焙特性、产生风味和香气等 [2]。真菌、细菌和酵母等微生物来源的磷脂酶比植物和动物来源具有优势,因为它们可以通过发酵以高产量和纯度生产 [3]。最有效的真菌生产者是黑曲霉、环青霉和少根根霉。黑曲霉可产生高产量的磷脂酶 A1 和 A2 [4]。固定化黑曲霉磷脂酶 A2 对植物油的重复脱胶表现出良好的稳定性 [5]。最常见的细菌生产者是假单胞菌和芽孢杆菌。铜绿假单胞菌和蜡状芽孢杆菌产生胞外磷脂酶 C [6,7]。枯草芽孢杆菌分泌磷脂酶 A2,并且已经通过基因改造以提高产量。在稳定期,荧光假单胞菌可以产生各种具有抗菌潜力的次级代谢物,例如氢氰酸 (HCN)、绿脓杆菌素 (Pit) 和 2,4-二乙酰间苯三酚 (Phi),以及铁螯合代谢物 [8]。绿脓杆菌素、水杨酸和绿脓杆菌素。蛋白酶、磷脂酶 C 和脂肪酶是从各种环境中分离的荧光假单胞菌菌株产生的三种细胞外酶的例子 [9]。在稳定生长期测定的磷脂分解活性水平最高,表明生长阶段依赖机制负责诱导这些酶。此外,酵母生产者是隐球菌,它被固定化并用于大豆油脱胶。 Candida rugosa 是一种脂肪酶和磷脂酶生产者,固定化 C. rugosa 脂肪酶用于结构化脂质的生产 [10]。微生物磷脂酶,如磷脂酶 A1、A2、C 和 D,在脱胶、油脂酯交换、卵磷脂生物合成和废水处理应用中表现出良好的应用前景 [11]。它们的酶水解导致磷脂部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和表征,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。