获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 MRI 已被广泛用于识别自闭症谱系障碍 (ASD) 的解剖和功能差异。然而,许多这些发现已被证明难以复制,因为研究依赖于小规模的队列,并且建立在许多复杂、未公开的分析选择之上。我们进行了一项国际挑战,以根据 MRI 数据预测 ASD 诊断,我们提供了来自 2,000 多人的预处理解剖和功能 MRI 数据。对预测的评估是严格盲测的。146 名挑战者提交了预测算法,这些算法在挑战结束时使用未见数据和额外的采集站点进行了评估。对于最佳算法,我们研究了 MRI 模式、大脑区域和样本量的重要性。我们发现证据表明 MRI 可以预测 ASD 诊断:10 个最佳算法可靠地预测了诊断,AUC~0.80 - 远远优于目前使用 20 倍大队列中的基因分型数据可以获得的结果。我们观察到功能性 MRI 对预测比解剖性 MRI 更重要,并且增加样本量可以稳步提高预测准确性,从而为改进生物标志物提供了一种有效的策略。我们还观察到,尽管有强烈的动机将其推广到看不见的数据,但给定数据集上的模型开发面临着过度拟合的风险:在现有数据的交叉验证中表现良好,但不能推广。最后,我们能够在挑战结束后添加的外部样本 (EU-AIMS) 上预测 ASD 诊断,尽管预测准确性较低 (AUC=0.72)。这表明,尽管基于大型多站点队列,但我们的挑战仍然产生了在数据集变化面前脆弱的生物标志物。