图 1:国防情报局的反太空威胁连续体(DIA,2022 年) ..... 9 图 2:轨道类型和用途(DIA,2022 年) ...................................................................................... 12 图 3:美国空军 C-17 运输机上的便携式三星座 GNSS 接收器(作者照片) ............................................................................. 38 图 4:AN/TRN-47 TACAN(CWO Bryan Nygaard) ............................................................................. 44 图 5:第一太空旅士兵提供隶属于机动部队的次要太空任务(SSGT Dennis Hoffman) ............................................................................................................. 48 图 6:太空监视网络地理位置(USSTRATCOM 图表) ...................................................................................................... 80 表 1:按太空任务区域划分的需求、损失和二阶效应 ............................................................................................. 25 表 2:太空发射设施 ............................................................................................................................. 78 表3:卫星控制网主要设施...................................................................................................... 78 表 4:空间监视网主要设施................................................................................................... 79 表 5:常见低地球轨道极地轨道风险概况........................................................................................ 82
摘要:随着新卫星数量的急剧增加,全面的太空监视变得越来越重要。因此,高分辨率逆合成孔径雷达 (ISAR) 卫星成像可以提供对卫星的现场评估。本文表明,除了经典的线性调频啁啾信号外,伪噪声信号也可用于卫星成像。伪噪声传输信号具有非常低的互相关值的优势。例如,这使得具有多个通道的系统可以即时传输。此外,它可以显著减少与在同一频谱中运行的其他系统的信号干扰,这对于卫星成像雷达等高带宽、高功率系统尤其有用。已经引入了一种新方法来生成峰值与平均功率比 (PAPR) 与啁啾信号相似的宽带伪噪声信号。这对于发射信号功率预算受到高功率放大器严格限制的应用至关重要。本文介绍了产生的伪噪声信号的理论描述和分析,以及使用引入的伪噪声信号对真实空间目标进行成像测量的结果。
近年来,广播式自动相关监视 (ADS-B) 服务在民用和军用航空中变得至关重要,它可以跟踪受控区域地面上的飞机并为非受控空域的飞机提供服务。除了地面飞机探测之外,一些机构已经实施并验证了对受控区域和非受控区域的太空监视 [1][2]。对于科学航天器,特别是用于地球观测的纳米卫星 (<10kg),尺寸和重量是限制和影响设计的最主要因素,对于天线系统也是如此。因此,在使用天基监视系统时,优化的天线设计以检测飞机信号是强制性的。在本文中,我们提出了一种小尺寸、低轮廓的 L 波段天线,适用于太空操作并针对 ADS-B 信号接收进行了优化。设计要求和约束在第 II 部分中描述,模拟和测试结果在第 III 部分中给出。第 IV 部分总结了这里提出的工作。
在太空领域意识(SDA)任务领域,尤其是地球同步轨道,在现有的太空监视网络(SSN)和商业市场中,主要有两个现象,用于观察,测量和表征近距离空间对象(CSO):地面基于雷达和电动光电传感器。这些现象学和能力在SDA社区中是众所周知的,但跌倒了。本文将介绍并强调强大的SDA现象学,被动射频(RF)的独特能力。被动RF天线可用于支持CSO场景,以进行独特的卫星识别和通过操纵检测产生ephemeris。通过观察每个卫星自己的RF传输,它将涵盖用于轨道测定和操纵检测的独特,高度准确的,非交叉标记的测量结果。包括现实世界的商业示例,用于突出这种能力和对分析的讨论。
近年来,广播式自动相关监视 (ADS-B) 服务在民用和军用航空中变得至关重要,它可以跟踪受控区域地面上的飞机并为非受控空域的飞机提供服务。除了地面飞机探测之外,一些机构已经实施并验证了对受控区域和非受控区域的太空监视 [1][2]。对于科学航天器,特别是用于地球观测的纳米卫星 (<10kg),尺寸和重量是限制和影响设计的最主要因素,对于天线系统也是如此。因此,在使用天基监视系统时,优化的天线设计以检测飞机信号是强制性的。在本文中,我们提出了一种小尺寸、低轮廓的 L 波段天线,适用于太空操作并针对 ADS-B 信号接收进行了优化。设计要求和约束在第 II 部分中描述,模拟和测试结果在第 III 部分中给出。第 IV 部分总结了这里提出的工作。
然而,自 20 世纪 90 年代引入“人类安全”维度以来,国际关系发生了根本性变化,控制外层空间技术变得越来越复杂。新兴外层空间技术有望丰富我们的生活,因此这些理念之间存在着巨大的矛盾,难以执行旨在遏制由开发新技术的无处不在的工具所带来的双重用途技术的法规,同时又要减轻随之而来的风险和脆弱性。双重用途技术还意味着它们可能对预定目标以外的目标造成破坏。双重用途空间系统的例子包括全球定位、电信和侦察,所有这些系统都可以为平民或军队服务。这与“多用途”技术不同,后者是一种可以用于防御或进攻目的的技术。此类技术可能源自民用(包括商业)实体,这些实体希望将该技术用于民用目的,但仍然可以将其武器化 [1]。太空监视和跟踪技术属于传统的双重用途类别,可用于民用和军事目的。
近年来,广播式自动相关监视 (ADS-B) 服务已成为民用和军用航空的必备服务,它可以跟踪受控区域内的地面飞机,并为非受控空域的飞机提供服务。除了地面飞机探测之外,一些机构还实施并验证了对受控区域和非受控区域的太空监视 [1][2]。对于科学航天器,尤其是用于地球观测的纳米卫星 (<10 公斤),尺寸和重量是限制和影响最大的设计驱动因素,即使对于天线系统也是如此。因此,在使用太空监视系统时,优化的飞机信号检测天线设计是强制性的。在本文中,我们提出了一种小尺寸、低轮廓 L 波段天线的方案,适用于太空操作,并针对 ADS-B 信号接收进行了优化。设计要求和约束在第 II 部分中描述,模拟和测试结果在第 III 部分中介绍。第 IV 部分总结了本文介绍的工作。
Timothy D. Hall助理负责人,太空系统和技术部霍尔博士霍尔博士在2002年在实验室担任研究助理。作为2003年空中交通管制系统小组的工作人员,他通过开发和实施高级算法成功地为增强的区域状况意识系统领导了传感器融合工作。Hall博士于2006年转移到里根测试地点(RTS),成为2010年的RTS助理网站经理。在2011年返回列克星敦后,他曾在高级传感器和技术小组中担任过多个领导角色,最终在2016年成为领导者。在这段时间里,霍尔博士开发了一个高影响力的投资组合,该投资组合专注于轨道测试仪器,电子战和太空监视传感器。他在实验室的美国特种作战司令部投资组合和国家太空测试和培训综合体的启动方面发挥了作用。
•反映“轻触点”目标,调查问卷被简化以减少所请求的数据(例如2017/18是可选的,订立域的收入)和用于简化调查响应旅程的在线路由。•维持了2016年和2018年研究的现代化细分,但扩展到包括新活动(例如太空港,清除碎屑,太空监视和跟踪,轨道维修); •根据更新的英国太空会议列表,扩大对英国空间相关组织的标识 - 2020年的发现基于1,218个基于英国的太空组织; •使用广泛的公共/免费/私人/付费信息来源对1,800多个组织的微观二级研究,以确定英国和空间相关性; •该版本的新版本包括对英国太空公司投资的研究和分析; •对Covid-19和Eu-Exit对英国空间行业收入,劳动力,需求,供应商和投资的影响的分析。•2016年和2018年版中介绍的在英国经济中对空间和卫星服务使用的评估的更新。
使用分阶段的阵列雷达用于空间情境意识提供了电子束转向和数字束形成的优势,从而可以在不同任务之间快速切换,例如形成搜索围栏和目标跟踪。通过德国实验空间监视和跟踪雷达盖斯特拉(Gestra),最近在弗劳恩霍夫(Fraunhofer)高频物理学和雷达技术研究所(Fhr)建造了一个系统。诸如Gestra之类的分阶段阵列雷达,由单独的接收器和发射器组成,可以启用准单位静态和偏爱操作模式。这种方法固有地提供了将Gestra扩展到多个,合作转移和接收单位网络的可能性。这样的系统会带来各种各样的机会,以提高空间监视的性能,同时鉴于信号处理和操作模式,也增加了方法论挑战。我们讨论了我们最近和正在进行的有关梯级雷达网络的调查,以进行太空监视,并根据Gestra报告即将实现此类系统的实现。