铜水微型热管和 k-core 封装石墨热管理技术已开发用于高性能 ASIC(倒装芯片和微处理器)的直接热管理,并已成功获得太空飞行状态的资格。该技术可实现高性能、组件级直接冷却,并增强从底盘接口到空间散热器的底盘级热扩散。该技术使未来电信卫星有效载荷的散热发生了重大变化。建造了一个由三个代表性面包板底盘组成的资格测试车辆,带有微型热管热管理系统 (TMS),用于代表性倒装芯片微处理器热负荷的直接热管理以及与底盘级 k-Core 扩散器的热连接。飞行演示测试包括真空环境中的性能测试、热特性、老化和寿命测试以及热机械测试。微型热管和 k-Core TMS 技术已达到 TRL 8,可部署在直接微处理器热管理和热链接应用中,以克服传导传热的局限性。本文概述了该技术、资格测试计划和资格测试数据。
I. 序言 新的太空技术和轨道商业机会催生了全球航天产业的指数级增长和快速变化。火箭发射、卫星再入和上级火箭将气体和气溶胶排放到从地球表面到低地球轨道的每一层大气层中。这些排放可能会影响气候、臭氧水平、中层云量、地面天文学以及热层/电离层成分。航天产业的增长速度令人印象深刻:发射和再入质量通量最近每三年翻一番(Lawrence 等人,2022 年)。根据行业预测,到 2040 年,太空活动将继续增加至少一个数量级(Ambrosio 和 Linares,2024 年)。大型低地球轨道 (LEO) 卫星星座正在改变航天产业,因此到 2040 年,计划中的系统每年将需要发射和处置超过 10,000 颗卫星到大气层中。到 2040 年,以液化天然气 (LNG) 燃料发动机为动力的重型运载火箭预计将成为发射活动的主导 (Dominguez 等人,2024)。航天工业向大气排放的范围和性质正在急剧增长和变化 (Shutler 等人,2022)。发射和再入气溶胶排放量估计表明,到 2040 年,许多计划中的大型低地球轨道星座将需要将发射吨位从目前的 3,500 tyr -1 增加到 30,000 tyr -1 以上 (Shutler 等人,2022)。火箭燃烧排放量将与有效载荷同步增加。蒸发空间碎片和废火箭级的再入排放量将从目前的每年 1,000 吨增加到每年 30,000 吨以上 (Shulz 和 Glassmeier 2021)。到 2040 年,全球发射和再入大气层颗粒物(黑碳和金属氧化物)排放到平流层的总通量将与自然陨石背景通量相当。这些估计不包括不确定但可能很重要的发射要求,例如 MEO(中地球轨道)和 GEO(地球静止赤道轨道)等轨道上的新太空系统或积极的月球或火星探索计划。发射和再入大气层排放量的上升是在人们对航天排放的成分和化学成分存在广泛知识缺口的情况下发生的。人们对大型液化天然气火箭的排放和影响知之甚少。最近发现,重返大气层的太空碎片中的金属已经存在于构成天然平流层硫酸盐层的 10% 颗粒中,这强调了迫切需要了解未来重返大气层数量级的增加将如何影响大气(Murphy 等人,2023 年)。显然,总体上缺乏评估未来航天排放影响所需的科学和工程模型、工具和数据。知识差距:为了应对这些日益增长的担忧,2021 年,Surendra P. 博士美国宇航局艾姆斯研究中心的 Sharma 组织并领导了一个多机构工作组(航空航天公司的 Martin Ross 博士、NOAA/CSL(美国国家海洋和大气管理局/化学科学实验室)的 Karen Rosenlof 博士、科罗拉多大学 NOAA CSL 化学与气候过程组的 Chris Maloney 教授、哥伦比亚大学的 Kostas Tsigaridis 以及 GISS/NASA(戈达德空间研究中心/美国国家航空航天局)的 Gavin Schmidt 博士),在美国宇航局内部资金(地球科学部)的支持下,分析了预测发射和再入排放全球影响的模型的有效性和可信度,以及可用于验证这些模型的数据。该小组确定了对该现象的基本科学理解方面的关键差距,包括建模技术和
I.序言中的新空间技术和轨道上的商业机会导致了一个成倍增长且快速变化的全球空间行业。火箭发射并重新进入卫星和上层阶段,将气体和气溶胶散发到从地球表面到低地轨道的大气中的每一层。这些排放可能影响气候,臭氧水平,中层云彩,地面天文学和热层/电离层组成。空间行业的增长率令人印象深刻:发射和重新进入质量通量最近大约每三年增加一倍(Lawrence等,2022)。太空活动将继续增加到2040年的数量级(Ambrosio and Linares,2024年)。空间行业正在由大型低地轨道(LEO)卫星星座进行转换,因此到2040年计划的系统将需要每年推出10,000多颗卫星,并将其处置到大气中。由液态天然气(LNG)燃料发动机提供动力的重型升力火箭将在2040年到2040年(Dominguez等,2024)主导。空间行业排放到大气的范围和特征正在从根本上增长和变化(Shutler等,2022)。估计发射和再入气溶胶排放量表明,许多计划的大型LEO星座将需要从当前的3,500 Tyr -1增加到30,000 Tyr -1到2040年的发射吨位(Shutler等人,2022年)。火箭燃烧的排放将随着有效载荷而增加。努力。从汽化的空间碎片和用过的火箭阶段回归的排放量将从目前的每年1,000吨增加到每年30,000吨以上(Shulz and Glassmeier 2021)。到2040年,进入平流层的发射和再入颗粒物(黑碳和金属氧化物)排放的总全局通量将与自然的气象背景通量相媲美。这些估计值不包括新轨道中新空间系统的不确定但可能有重要的发射要求,例如Meo(中等地球轨道)和地理赤道轨道(地球赤道轨道),也可能是月球或火星探索的积极进程。面对太空飞行排放的构成和化学差距,发射和重新进入的排放率正在发生。对大型LNG火箭的排放和影响知之甚少。最近发现,构成天然平流层硫酸盐层的10%的颗粒中已经存在了重新进入空间碎屑的金属,这强调了迫切需要了解重新进入的即将到来的数量级如何影响大气(Murphy等人,2023年)。显而易见的是,总体上缺乏评估未来太空排放影响所需的科学和工程模型,工具和数据。小组确定了对现象的基本科学理解的关键差距,包括建模技术和知识差距:应对这些日益严重的关注,在2021年,Surendra P. Sharma博士,NASA AMES研究中心,组织和领导多机构工作组(Martin Ross博士,航空航天公司Martin Ross博士; Karen Rosenlof博士; Karen Rosenlof博士,NOAA/CSL,NOAA/CSL(NOAA/CSL)科罗拉多州哥伦比亚大学的Kostas Tsigaridis;
自成立以来,戈达德太空飞行中心几乎完成了其使命,成为我已故丈夫罗伯特·戈达德的目标和荣誉的象征。作为美国国家航空航天局的活跃成员,戈达德中心已经为人类对高层大气和外层空间的认识做出了许多重大贡献——这正是我丈夫一生的目标。通过电视跟踪活动,戈达德的名字在美国家庭中广为人知。像大多数科学家一样,我丈夫对他的实验和理论进行了仔细而详细的记录,偶尔进行总结和总结。因此,戈达德太空飞行中心不时总结其活动、评估其成功并规划未来更有效的工作是最合适的。在该中心的落成典礼上,我评论说,我丈夫是一个非常快乐的人,做着他最想做的事情,有资金,有最佳的环境;我希望那些在戈达德中心工作的人能够得到祝福。我觉得这个希望正在实现。我还呼吁关注“直率思考者和勤奋工作者”的机会,希望中心能够吸引这样的人,并留住他们。这一愿望已经实现。有了这样的人才,我毫不怀疑,活体纪念馆将继续在未来的空间中发挥重要作用。
马歇尔太空飞行中心的 X 射线和低温设备 (XRCF) 是世界上最大的 X 射线光学校准设备,也是 NASA 首屈一指的低温光学测试设备。该设备专为校准钱德拉望远镜而建,曾参与过其他几项 X 射线任务,直到 2005 年才开始专注于低温下的正入射光学测试。最近,该设备的 X 射线测试功能已恢复使用并进行了更新。已添加新的光束监视器、焦平面探测器以及测试物品和仪器定位系统。X 射线数据采集系统已更新。正在开发实时位置监控计量系统,该系统将能够通过发散光束的部分照明校准大直径光学器件。将讨论该设备新扩展的 X 射线测试功能。
3 月 22 日至 26 日这一周将在本课程中用作“春假”,这是工程与应用科学学院的建议,旨在为我们所有人提供一种安全且有益的方式来促进健康、福祉和学习,而无需离开校园。在这周,我们不会有任何考试或作业。但是,我们仍将安排讲座、办公时间和任何在本周安排的互动课堂活动,3 月 25 日除外,这是“健康日”。工程与应用科学学院想强调的是,在这周通常被指定为春假的一周里,你们所有人仍然需要负责任地行事;他们还要求你不要利用这一周旅行或从事可能导致校园或社区爆发疫情的危险行为。
生理表型杰弗里·琼斯(Jeffrey Jones)博士,贝勒·科尔(Baylor Coll)。of Medicine 1:00 PM行为表型Bettina Beard博士,NASA 1:15 PM形态学表型Lori Ploutz-Snyder博士,Univ。下午1:30关于曲目1的一般讨论Kate Robson Brown博士,主持人,大学。英国布里斯托尔英国布里斯托尔
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2024年1月20日发布。 https://doi.org/10.1101/2024.01.18.576275 doi:Biorxiv Preprint
主要积分1。我们介绍了世界上首次成功的爆炸引擎的航天示范。2。旋转爆炸引擎(RDE)和脉冲爆炸引擎(PDE)在飞行环境下成功地在太空中操作,并成功地获取了这些发动机的操作数据。3。这项研究的结果表明,爆炸引擎非常接近实际用作航空航天发动机,例如用于深空探索的踢电机。研究背景和内容爆炸引擎在极高的频率(1-100 kHz)下产生爆炸和压缩波,以显着提高反应速度,从而实现了火箭发动机的重量的根本性降低,并通过轻松产生推力来增强其性能。目前,研究正在日本,北美,欧洲,亚洲和澳大利亚进行积极进行,以期为空间使用的高性能引擎商业化。这个联合研究小组成功地实现了全球首次飞行引擎引擎的展示。这项研究中开发的爆炸引擎系统被加载到Sounding Rocket S -520-31的任务部分,并于2021年7月27日上午5:30从Jaxa Uchinoura Passion Center(USC)发射。在第一阶段火箭分离后,RDE(6秒操作,500 -N推力)和PDE(2秒操作x 3次)在空间中正常操作,以及远程组和恢复模块大鼠在空间中正常操作。燃料是甲烷,氧化剂是氧气。
1密歇根大学凯洛格大学眼科科学系89512,美国5耶鲁大学,纽黑文,CT 06520,美国6杨市和妇女医院,哈佛医学院,马萨诸塞州波士顿,马萨诸塞州02115,美国7 Sidney Kimmel医学院,托马斯·杰斐逊大学,费城,宾夕法尼亚州费城,19107,19107,美国,美国,美国,美国,美国,美国,美国8号,贝勒,贝勒,贝勒,布兰特,托克斯顿777030。美国休斯顿休斯顿卫理公会医院,美国德克萨斯州休斯顿,美国10号,休斯敦卫理公会研究所,休斯敦卫理公会医院,美国德克萨斯州休斯敦,美国117030,美国11,美国纽约州纽约州纽约市纽约市韦尔·康奈尔医学,美国纽约州纽约市纽约市,纽约州,美国12号,美国12号。美国德克萨斯州休斯敦市德克萨斯州安德森癌症中心,美国14号德克萨斯州A&M医学院,布莱恩,德克萨斯州布莱恩,美国15号,美国15,爱荷华大学医院和诊所,美国爱荷华州50010,美国爱荷华州50010,美国50010