摘要。人们越来越多地讨论太阳辐射改造 (SRM) 作为一种降低全球和区域温度的潜在工具,以便为传统的碳减排措施的实施争取时间。然而,迄今为止的大多数模拟都假设 SRM 是气候变化工具箱的附加组件,而没有考虑减排和 SRM 之间的任何物理耦合。在本研究中,我们分析了这种耦合的一个方面:在 SRM 部署下,通过改变光伏 (PV) 和聚光太阳能 (CSP) 的生产潜力,可再生能源 (RE) 容量以及脱碳率可能会受到何种影响。评估使用了地球系统模型 CNRM-ESM2-1 针对基于情景的实验的模拟 1 小时输出。SRM 情景使用平流层气溶胶注入 (SAI) 将全球平均温度从高排放情景 SSP585 基线降低到中等排放情景 SSP245。我们发现,到本世纪末,与 SSP245 相比,SAI 条件下大多数地区每年经历的低光伏和 CSP 能量周数会增加。与 SSP585 相比,虽然 SAI 条件下低能量周数的增加在全球范围内仍然占主导地位,但某些地区可能会受益于 SAI 并经历更少的低光伏或 CSP 能量周数。与 SSP 情景相比,SAI 条件下电位的很大一部分下降被 SAI 条件下光学上层对流层云层较薄所抵消,这使得更多的辐射能够穿透到地面。北半球和南半球的中纬度地区光伏电位相对下降幅度最大。我们的研究表明,使用 SAI 将高端全球变暖降低到温和全球变暖可能会对利用太阳能可再生资源满足能源需求带来更大的挑战。
该研究研究了新的欧盟排放交易系统(ETS 2)的功能,用于道路交通,建筑物和小型系统。她解释了确定和控制证书提供的规则,包括市场稳定储备(MSR)的功能和价格阻尼机制。在研究的分析部分中,我们评估了供求的平衡以及在各种假设下进行CO 2排放和CO 2价格的拍卖。在最后一部分中,我们研究了欧盟气候保护条例框架内ETS 2与国家目标之间的相互作用(努力共享法规,ESR),与德国国家ETS(NEHS)的关系,并在2040年之前提供了前景。
摘要:该研究基于太阳辐射数据,对单一和混合碱性水电解槽和储能系统进行了绿色氢气生成的技术经济分析。此外,还进行了碳足迹研究,以估算已开发的系统的二氧化碳排放量。碱性水电解槽和储能系统的最佳规模由考虑碳排放碳税的遗传算法确定。根据分项成本估算结果,单一系统和混合系统的单位氢气生产成本分别为 6.88 美元/千克和 8.32 美元/千克。此外,资本成本是确定碱性水电解槽和储能系统最佳规模的关键因素,这对于降低单位氢气生产成本至关重要。最后,考虑到二氧化碳税的上升趋势,需要努力将生产绿色氢气的资本成本降至最低。
摘要:该研究基于太阳辐射数据,对单一和混合碱性水电解槽和储能系统进行了绿色氢气生成的技术经济分析。此外,还进行了碳足迹研究,以估算已开发的系统的二氧化碳排放量。碱性水电解槽和储能系统的最佳规模由考虑碳排放碳税的遗传算法确定。根据分项成本估算结果,单一系统和混合系统的单位氢气生产成本分别为 6.88 美元/千克和 8.32 美元/千克。此外,资本成本是确定碱性水电解槽和储能系统最佳规模的关键因素,这对于降低单位氢气生产成本至关重要。最后,考虑到二氧化碳税的上升趋势,需要努力将生产绿色氢气的资本成本降至最低。
太阳是地球的终极能源。太阳是地球上生命的源泉,直接(或)间接地为大多数可再生系统提供燃料。太阳发出的辐射能称为太阳能,它是一种可再生能源。地球以热和光的形式从太阳接收能量。每天早晨太阳升起,晚上太阳落下,然后太阳释放出大量的能量。所以,太阳是生命形式最重要的能量来源之一。在太阳核心深处,氢原子通过热核聚变反应,然后产生大量能量。这种能量传播 9300 万英里,在 8 分钟内到达地球。地球上不同形式的能量可能都来自太阳。
6 参考文献................................................................................................................................ 40
摘要 已经通过实验测量了波长范围为 300 – 1,100 nm 的广谱太阳辐射对不同粒径范围的水和二氧化碳冰的穿透深度。这两种冰成分都在火星表面被发现,并被观测到为表面霜冻、积雪和冰盖。之前已经测量过雪和板冰的 e 折叠尺度,但了解这些最终成员状态之间的行为对于模拟与火星上冰沉积物相关的热行为和表面过程非常重要,例如晶粒生长和通过烧结形成板冰,以及二氧化碳喷射导致蜘蛛状物形成。我们发现穿透深度随着晶粒尺寸的增加而以可预测的方式增加,并且给出了一个经验模型来拟合这些数据,该模型随冰成分和晶粒尺寸而变化。
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
