在协作机器人技术和智能系统中,人类姿势识别的准确性显着影响人机相互作用的自然性和安全性,将其确立为自动化系统的核心技术(Hernández等,2021; Liu and Wang和Wang,2021)。随着深度学习和计算机视觉的快速发展,姿势识别应用已超越机器人控制和监测,包括增强现实,体育分析和智能监视(Fan等,2022; Desmarais等,2021)。此外,人类姿势分析涵盖了外部传感技术,例如基于视觉的系统和内部传感技术,例如基于可穿戴传感器的方法。这两个范式具有互补的优势,并可以实现广泛的应用。
摘要:肌肉减少肥胖(SO),其特征是与年龄相关的肌肉损失和多余的体内脂肪,这显着损害了姿势控制。然而,有限的研究探讨了在患有SO的老年人姿势控制期间,同意运动训练对神经肌肉策略的影响。这项研究招收了50名具有SO的老年人,分为干预组(IG,n = 25,平均年龄= 76.1±3.5岁;平均BMI = 34.4±4.0 kg/m 2)和对照组(CG,n = 25,平均年龄= 75.9±5.4岁;平均BMI = 32.32.32.9±2.2.9±kg/m 2)。IG的参与者参加了60分钟的总移动性加上计划(TMP)课程,每周三次,共四个月,而CG则保持了典型的日常活动。在干预之前和之后进行了标准化评估。这些评估包括ROMBERG和定时进行和进行(拖船)测试,以及在各种条件下的压力中心(COP)位移参数的测量。此外,在姿势控制评估期间量化了踝肌肉活性,以及足底和背侧弯曲的最大自愿性收缩。干预后的结果显示,在Romberg中测量的站立时间(-15.6%,p <0.005)和TUG(-34.6%,p <0.05)测试显着减少。此外,在各种条件下,COP面积和速度显着降低(P <0.05)。姿势控制改善与强度的增加(p <0.05)和踝肌激活的减少有关(p <0.05)。这些发现突出了与肌肉减少症和肥胖的协同作用相关的神经肌肉系统变化的可逆性,强调了该人群中姿势控制调节的训练性。通过将这些见解纳入临床实践和公共卫生策略中,似乎可以优化具有SO的老年人的健康和福祉。
最近,时空变压器结构已被广泛应用于3D人类姿势估计的问题,从而实现了最新的性能。这些方法中的许多方法都将单个框架中的单个关节视为令牌,并且在同一框架或相同轨迹的令牌上施加注意力。尽管这种结构可有效地计算单个关节之间的相关性,但它过于限制,因为诸如帧或轨迹之类的全局特征无法很好地传达。在本文中,我们建议Galformer解决此问题。Galformer由局部和全局变压器块组成,前者基于关节令牌,如先前的方法一样,而后者,即全局混合变压器,将所有关节混合在特定框架范围内的所有关节,以实施特征交换的电感偏见。在提出的方法中交替重复这两个变压器块,以计算关节,形状和轨迹之间的相关性。实验表明,与人类36M,MPI-INF-3DHP和HUMANEVA数据集的现有方法相比,我们的方法具有优越或至少具有竞争性能。
图1:我们发现我们发现在重定向步行(RDW)期间发现与场景运动相关的生理信号的特性的可视化和生理信号的特性。(a)我们进行了心理物理实验,其中参与者完成了数百个试验的旋转任务,在旋转过程中,将不同量的额外场景运动注入虚拟环境中。参与者报告了他们是否认为额外的注射动作,我们计算了他们对这些动作的视觉敏感性。(b)我们的分析表明,随着注射动作的速度提高,参与者的凝视(左)和姿势(右)的稳定性下降。这些结果首次表明了重定向强度(注入视觉运动增长)和生理信号之间的直接相关性。
引用:Bhatkar P.B.(2025)通过生成AI增强银行安全性中的弹性姿势:预测性,主动和自适应策略,《欧洲计算机科学和信息技术杂志》,第13(2),43-50页,摘要:这项研究探讨了生成人工智能在增强银行安全性弹性方面产生人工智能的变革潜力。通过结合定量模拟和定性评估的混合方法方法,我们演示了生成性AI模型如何显着改善脆弱性检测,事件响应时间和业务连续性计划。我们的发现表明漏洞检测提高了30%,恢复时间减少了45%,这表明AI驱动的方法代表了银行安全框架的范式转移。该研究为实施生成的AI解决方案提供了一个全面的框架,同时应对实践挑战和道德考虑。关键字:生成AI,银行安全,弹性,脆弱性检测,预测分析,自适应策略
摘要:本文着重于用于使用车辆中安装的托盘处理机器人自动收集货运的电动货车的自主导航。除了自动驾驶汽车导航外,车辆自治的主要障碍是货运的自主集合,无论货运方向/位置如何。这项研究重点是为车辆产生停车位,而不论货运以其自主收集而定向。货运方向是通过通过板载传感器捕获货运来计算的。之后,此信息使用数学方程式以及对车辆和货运收集限制的知识创建停车位。根据装载舱的可用性,生成了单独的停车位,用于车辆的单独装载湾。最后,将结果捕获和验证,以确定货运的不同方向以结束研究。
最相关的教学贡献,我于2004年以助理的身份开始了我的教学工作。Valladolid大学(UVA)的信号理论与通信与远程信息处理工程(TSCIT)的。 div>在2008年,我为论文辩护,经过4个课程(2004/05–2007/08)。 div>从2008/09学年到现在(15个课程),我已经开发了我作为医生的教学活动;促进Payud,CDOC和PTUN,直到2024年Caun。在这19个课程中,我教过各种科目:从一定程度到硕士学位,无论是强制性还是可选的,都在几个程度上。 div>我在第4个论文,9 TFM,1项研究工作的监督下同时进行了这项活动,有利于DEA,19 PFC和17 TFG。 div>我还辅导39个外部实践。 div>我还参加了ETSIT-UVA Orienta-Elementum计划(自2009/10学年以来)和葡萄医学教师Orienta-Gib(自2019/20学年以来)。 div>在我的整个学术生涯中,我试图承担教学责任。 div>在这方面,我一直是主题和主体的协调员。 div>近年来,由于我参与了葡萄生物医学工程(IB)研究的实施,我加强了这项活动:我是IB葡萄学位验证记忆的技术委员会成员(2018/19);我是学位委员会的一员,我一直是第三方协调员,并且我已经协调了TFG(直到2023年7月);自2023年7月以来,我一直是IB学位的协调员;我已经参加了UVA IB(2021/22)的硕士验证记忆发展技术委员会,目前是学位委员会的成员。 div>
土地利用变化和气候变化被认为是当前生物多样性下降的两个主要驱动力。保护区有助于保护景观免受其他拟人化障碍,并在正确设计后可以帮助物种应对气候变化的影响。当旨在保护区域生物多样性而不是保护焦点物种或景观元素时,受保护区需要覆盖区域生物多样性的代表性,并在功能上连接,从而促进网络中受保护区域中的个体移动,以最大程度地提高其有效性。我们开发了一种方法来定义有效的保护区,以生态代表性和功能连通性作为标准在区域网络中实施。我们在加拿大Que´bec的Gaspe'sie地区说明了这种方法。我们使用基于个体的模型模拟了濒临灭绝的大西洋天际驯鹿人群(rangifer tarandus caribou)的运动,以确定基于这种大型哺乳动物的功能连通性。我们创建了多个保护区网络方案,并评估了其生态反映性和对当前条件的功能连接性。我们选择了最有效的网络方案的子集,并提取了其中包括的保护区域。生态代表性与创建网络的功能连接之间的权衡。在最有效的网络中反复选择了可用的区域。最大化生态代表性和功能连通性的保护区代表了在有效保护区域网络中实施的合适区域。这些领域确保了该区域生物多样性的代表样本被网络涵盖,并最大程度地提高了保护区域之间和内部的随着时间的流动。
