该战略阐述了我们管理亨伯河流域地区格里姆斯比、安科姆和劳斯集水区内新旧抽水和蓄水的方法。格里姆斯比、安科姆和劳斯抽水许可战略 (ALS) 区域覆盖面积约 1,464 平方公里,北至亨伯河口,东至北海,南至威瑟姆和斯蒂平 ALS 区域,西至特伦特河下游 ALS 区域(位于东米德兰兹地区)。
¾ 采用 CMOS 工艺制造,低功耗 ¾ 很宽的工作电压范围( V DD =2.4V ~ 15V ) ¾ 最大到 12 位三态地址管脚或 6 位数据输出管脚 ¾ SD827 2B 解码可选择锁存型(后缀- L )和瞬态型(后缀- M )数据输出 ¾ 封装形式为 DIP18 、 SOP18 、 SOP20 或 CHIP (裸芯片)
2019年12月Rev.0.9 1/8©2019 SDC Microelectronics Co.,Ltd。www.sdc-semi.com0.9 1/8©2019 SDC Microelectronics Co.,Ltd。www.sdc-semi.com
主动抵抗对象:不服从的对象,其将自己的体力和精力用于建立、实现或保持抵抗姿态。攻击性对象:不服从的对象,其不服从最终导致对警官或其他人产生感知威胁或实际攻击。近距离弹药筒:可更换的智能弹药筒,具有 12 度角,当部署在近至 4 英尺的距离时,其探针可以达到最佳扩散范围。弹药筒的正面和主体均为黑色。序列号、弹药筒度数(12°)、二维条形码和有效期印在顶部。远距离弹药筒:可更换的智能弹药筒,用于远距离部署。它们具有 3.5 度角,可以在 11.5 英尺或更长的交战范围内有效。弹药筒的正面为黑色,主体为灰色。序列号、弹药筒度数(3.5°)、二维条形码和有效期印在顶部。传导能量武器 (CEW):任何便携式设备或武器,可从中发射电流、脉冲、波或光束,这些光束旨在暂时使人丧失行动能力。传导能量武器协调员 (CEWCO):由警察局长指定的高级官员,全面负责协调传导能量武器的维修、维护、购买和库存。CEWCO 还应保存与 CEW 培训有关的所有记录,以及与
[73] N. Takei,Y。Watanabe和J. Shikata,“手动渠道模型中无条件安全的盲验证代码”,载于:第三届国际工程,能源和
•S. Majidy,W.F。Braasch Jr.,A。Lasek,T。Upadhyaya,A。Kalev,N。YungerHalpern,量子热力学及其他地区的不承认保守指控。 nat Rev Phys 5,689–698(2023)。 •T。Upadhyaya,W.F。 Braasch,Jr.,G.T。 Landi,N。YungerHalpern,当保守数量无法相互通勤时,熵产生会发生什么。 ARXIV:2305.15480(2023)。 •S. Nahar,T。Upadhyaya,NorbertLütkenhaus,不完美的相对性和广义的诱饵量量子键分布。 arxiv:2304.09401(2023)。 •F. Kanitschar,I。George,J。Lin,T。Upadhyaya,N。Lütkenhaus,用于离散调制的连续可变量子键分布协议的有限尺寸安全性。 PRX量子4,040306(2023)。 •T。Upadhyaya,T。VanHimbeeck,N。Lütkenhaus,改进的校正项,用于降低量子键分布的尺寸。 arxiv:2210.14296(2022)。 •T。Upadhyaya,T。VanHimbeeck,J。Lin,N。Lütkenhaus,连续和离散可变协议的量子密钥分布的尺寸减小。 PRX量子2,020325(2021)。 •J. Lin,T。Upadhyaya,N。Lütkenhaus,离散调节的连续变量量子键分布的渐近安全分析。 物理评论X 9,041064(2019)。 •K。Georgiou,A。Jiang,E。Lee,A。Olave,I。Seong,T。Upadhyaya,升降机和项目系统,在部分vertex-Cover cover cover的多层室上进行。 理论计算机科学820,1-16(2020)。Braasch Jr.,A。Lasek,T。Upadhyaya,A。Kalev,N。YungerHalpern,量子热力学及其他地区的不承认保守指控。nat Rev Phys 5,689–698(2023)。•T。Upadhyaya,W.F。Braasch,Jr.,G.T。 Landi,N。YungerHalpern,当保守数量无法相互通勤时,熵产生会发生什么。 ARXIV:2305.15480(2023)。 •S. Nahar,T。Upadhyaya,NorbertLütkenhaus,不完美的相对性和广义的诱饵量量子键分布。 arxiv:2304.09401(2023)。 •F. Kanitschar,I。George,J。Lin,T。Upadhyaya,N。Lütkenhaus,用于离散调制的连续可变量子键分布协议的有限尺寸安全性。 PRX量子4,040306(2023)。 •T。Upadhyaya,T。VanHimbeeck,N。Lütkenhaus,改进的校正项,用于降低量子键分布的尺寸。 arxiv:2210.14296(2022)。 •T。Upadhyaya,T。VanHimbeeck,J。Lin,N。Lütkenhaus,连续和离散可变协议的量子密钥分布的尺寸减小。 PRX量子2,020325(2021)。 •J. Lin,T。Upadhyaya,N。Lütkenhaus,离散调节的连续变量量子键分布的渐近安全分析。 物理评论X 9,041064(2019)。 •K。Georgiou,A。Jiang,E。Lee,A。Olave,I。Seong,T。Upadhyaya,升降机和项目系统,在部分vertex-Cover cover cover的多层室上进行。 理论计算机科学820,1-16(2020)。Braasch,Jr.,G.T。Landi,N。YungerHalpern,当保守数量无法相互通勤时,熵产生会发生什么。ARXIV:2305.15480(2023)。 •S. Nahar,T。Upadhyaya,NorbertLütkenhaus,不完美的相对性和广义的诱饵量量子键分布。 arxiv:2304.09401(2023)。 •F. Kanitschar,I。George,J。Lin,T。Upadhyaya,N。Lütkenhaus,用于离散调制的连续可变量子键分布协议的有限尺寸安全性。 PRX量子4,040306(2023)。 •T。Upadhyaya,T。VanHimbeeck,N。Lütkenhaus,改进的校正项,用于降低量子键分布的尺寸。 arxiv:2210.14296(2022)。 •T。Upadhyaya,T。VanHimbeeck,J。Lin,N。Lütkenhaus,连续和离散可变协议的量子密钥分布的尺寸减小。 PRX量子2,020325(2021)。 •J. Lin,T。Upadhyaya,N。Lütkenhaus,离散调节的连续变量量子键分布的渐近安全分析。 物理评论X 9,041064(2019)。 •K。Georgiou,A。Jiang,E。Lee,A。Olave,I。Seong,T。Upadhyaya,升降机和项目系统,在部分vertex-Cover cover cover的多层室上进行。 理论计算机科学820,1-16(2020)。ARXIV:2305.15480(2023)。•S. Nahar,T。Upadhyaya,NorbertLütkenhaus,不完美的相对性和广义的诱饵量量子键分布。arxiv:2304.09401(2023)。•F. Kanitschar,I。George,J。Lin,T。Upadhyaya,N。Lütkenhaus,用于离散调制的连续可变量子键分布协议的有限尺寸安全性。PRX量子4,040306(2023)。•T。Upadhyaya,T。VanHimbeeck,N。Lütkenhaus,改进的校正项,用于降低量子键分布的尺寸。arxiv:2210.14296(2022)。•T。Upadhyaya,T。VanHimbeeck,J。Lin,N。Lütkenhaus,连续和离散可变协议的量子密钥分布的尺寸减小。PRX量子2,020325(2021)。•J. Lin,T。Upadhyaya,N。Lütkenhaus,离散调节的连续变量量子键分布的渐近安全分析。物理评论X 9,041064(2019)。•K。Georgiou,A。Jiang,E。Lee,A。Olave,I。Seong,T。Upadhyaya,升降机和项目系统,在部分vertex-Cover cover cover的多层室上进行。理论计算机科学820,1-16(2020)。