仅用于研究使用。不适用于诊断程序。有关当前认证,请访问thermofisher.com/certifications©2023 Thermo Fisher Scientific Inc.保留所有权利。除非另有说明,否则所有商标都是Thermo Fisher Scientific及其子公司的财产。DS0494-EN-03-2023
亚利桑那大学致力于创造和维护一个没有歧视的环境。为了支持这一承诺,大学禁止基于受保护分类的歧视,包括骚扰和报复,包括种族、肤色、宗教、性别、国籍、年龄、残疾、退伍军人身份、性取向、性别认同或基因信息。有关更多信息,包括如何报告问题,请参阅:http://policy.arizona.edu/human-resources/nondiscrimination-and-anti-harassment-policy
我们计划研究此类结构并实现一种高效自旋光子界面装置。这个具有挑战性的项目结合了先进的外延生长、纳米制造和量子光学实验。分子将嵌入二极管结构中,以允许在点之间施加电场,从而使两个点的能级产生共振,从而产生跨两个点的非局域化新电子态。自旋态将通过磁场下的光脉冲进行寻址和控制。然后可以设置原始实验,例如将一系列射频磁场脉冲调整到单重态-三重态自旋共振,从而驱动光学初始化的量子比特。
摘要:胶体量子点 (QD) 是有望应用于光子量子信息技术的单光子源。然而,开发具有胶体材料的实用光子量子装置需要对稳定的单个 QD 发射器进行可扩展的确定性放置。在这项工作中,我们描述了一种利用 QD 尺寸的方法,以便将单个 QD 确定性地定位到大型阵列中,同时保持其光稳定性和单光子发射特性。CdSe/CdS 核/壳 QD 被封装在二氧化硅中,以增加其物理尺寸而不干扰其量子限制发射并增强其光稳定性。然后使用模板辅助自组装将这些巨型 QD 精确定位到有序阵列中,单个 QD 的产率为 75%。我们表明,组装前后的 QD 在室温下表现出反聚束行为,并且它们的光学特性在长时间后保持不变。总之,这种通过二氧化硅壳层自下而上的合成方法和强大的模板辅助自组装提供了一种独特的策略,可以使用胶体量子点作为单光子发射器来生产可扩展的量子光子学平台。关键词:单光子源、纳米光子学、量子点、二氧化硅壳层、确定性定位
视频:液体喷射光电光谱(LJ-PES)在对液体水,水溶液和挥发性液体的电子结构的实验研究中取得了突破。这种技术的新颖性可以追溯到25年以上,其中在于在真空环境中稳定连续的微米直径LJ,以实现PES研究。PES中的关键数量是与电子垂直促进到真空中的最可能的能量:垂直电离能量,vie,for中性和阳离子,或垂直脱离能量VDE,用于阴离子。这些数量可用于鉴定物种,其化学状态和粘结环境及其在溶液中的结构特性。准确测量VIE和VDE的能力至关重要。相关的主要挑战是针对明确定义的能源参考的确定这些数量。仅采用最近开发的方法是通常的测量,通常对液体可行。实际上,这些方法涉及将凝结的概念应用于从液体样品中获取光电子(PE)光谱中,而不是仅依赖自第一个LJ-PES实验以来通常实施的分子 - 物理处理。这包括在自由电子检测之前明确考虑电子遍及液体表面的遍历。与精确的电离光子能量一起,此功能可以直接确定VIE或VDE,相对于液相真空水平,从任何感兴趣的PE特征中都可以直接确定。我们相对于液态真空水平的测量VIE和VDE的方法特别涉及检测样品中发出的最低能量电子,这些电子的能量勉强能够克服表面电势并积聚在液态光谱的低能尾巴中。通过将足够的偏置电位应用于液体样品,通常可以暴露出这种低能的光谱尾部,其尖锐,低的能量截止均显示出在测得的光谱中揭示真正的动力学零,而与实验中的任何扰动固有或外部电位无关。此外,通过还确定凝结物质中常见平衡能级的溶液 - 相VIE和VDE,费米水平可以量化固态PES溶液溶液工作功能,Eφ和液体可效应表面偶极效应中普遍实现的参考能。使用LJS,只能通过控制不良的表面充电和所有其他外部电势来正确访问费米水平,从而导致所有PE特征的能量移动,并排除准确的电子能量访问。更具体地说,必须设计条件以最大程度地减少所有不良电位,同时保持样品和设备之间的平衡,内在的(接触)的电位差。建立这些液相准确的能量引用方案,重要的是,可以从近偏差溶液中确定VIE和VDE,以及批量电子结构和界面效应之间的定量区别。■密钥参考我们将在此处审查和示例这些方案,并在此处审查这些方案,并在此处进行几种示例性水溶液,重点关注最低的离子化或最低能源 - 能源PE峰,这与水相种类的氧化稳定性有关。
二维材料中的层间电子耦合可通过堆叠工程实现可调和的突发特性。然而,它也会导致二维半导体电子结构的显著演变和激子效应的衰减,例如当单层堆叠成范德华结构时,过渡金属二硫属化物中的激子光致发光和光学非线性会迅速降低。这里我们报告了一种范德华晶体——二氯化氧化铌 (NbOCl 2 ),其特点是层间电子耦合消失,块体形式下具有单层状激子行为,以及比单层 WS 2 高三个数量级的可扩展二次谐波产生强度。值得注意的是,强二阶非线性使得能够通过自发参量下转换 (SPDC) 过程在薄至约 46 纳米的薄片中产生相关参量光子对。据我们所知,这是第一个在二维层状材料中明确展示的 SPDC 源,也是有史以来报道的最薄的 SPDC 源。我们的工作为开发基于范德华材料的超紧凑片上 SPDC 源以及经典和量子光学技术中的高性能光子调制器开辟了一条道路 1–4 。
摘要。量子信息作为一种可行技术的兴起需要适当的教学课程来为未来的劳动力做好准备。量子信息的基础关键概念涉及量子力学的基本原理,例如叠加、纠缠和测量。为了补充向新兴劳动力教授量子物理的现代举措,需要实验室经验。我们开发了一套量子光学实验课程,以教授量子力学基础和量子代数。这些实验室在桌面上提供光学元件的动手实验。我们还为教师创建了课程材料、手册、教程、零件和价格表。仪器的自动化提供了远程使用仪器的灵活性,并允许更多学生通过单一设置进行访问。
在后一种情况下。这些能量分散机制不仅对催化的量子效率具有深远的影响 - 显然对储能应用至关重要,而且对反应的催化转换率也具有最重要的意义。6给定光催化剂 - 猝灭剂组合的淬火和松弛之间的分馏用于光催化反应发育中的机械询问,以识别或确认哪些分子物种与兴奋的光催化剂相关。一种常见的技术是发光淬火(船尾– Volmer)分析,该分析测量了给定淬火物种的PC*淬火率,这是其浓度与辐射衰减过程竞争的函数。7实际上,该技术已经发现了提供机械洞察力的应用,并且最近已将其作为一种高通量筛选技术,用于发现新型的合成有机转化。8,9
光子器件的建模传统上涉及求解光与物质相互作用和光传播方程。在这里,我们通过使用量子计算机重现光学器件功能来演示一种替代建模方法。作为说明,我们模拟了光在薄吸收膜上的量子干涉。这种干涉可以导致光在薄膜上完全吸收或完全透射,这种现象引起了经典和量子信息网络中数据处理应用的关注。我们将干涉实验中光子的行为映射到 transmon 量子态的演化,transmon 是 IBM 量子计算机的超导电荷量子位。真实光学实验的细节在量子计算机上完美再现。我们认为,这种方法的优越性将在复杂的多光子光学现象和器件建模中得到体现。