芯吸和泵送 多年来,多孔金属已演变成许多难以解决的工艺问题。其中之一就是泵送和/或芯吸的使用。Mott 的多孔烧结金属是从航空航天到消费用途的许多应用的完美选择。 芯吸 具有非常均匀孔隙率的多孔金属结构将通过多孔金属结构将液体从流体储存器泵送液体并将液体施加到所需位置。由于均匀的孔分布和孔径,毛细管粘附发生在多孔结构内。 优点 无活动部件 长免维护使用寿命 清洁度 提供均匀的流动 连续操作 高强度、抗冲击 耐高温 过滤,为应用提供清洁流体 烧结金属用于液体冷却系统中的泵 多孔金属也可用于封闭的再循环系统。多孔材料在此系统中充当主泵。该系统的工作原理与芯吸相同,不同之处在于系统是完全封闭的。该系统的泵头压力可高达 30” H2O,具有这种性能的多孔金属适用于各种冷却应用。冷却应用航空航天卫星宇航员太空服冷却微电子电力电子开关整流器无功元件变压器
摘要:天然聚合物由于其内在的生物相容性和仿生性,已在很大程度上被研究为组织工程应用的脚手架材料。传统的脚手架制造方法提出了几个局限性,例如使用有机溶剂,获得非均匀结构,孔径的变化以及缺乏孔隙互连性。这些缺点可以根据使用微流体平台的创新和高级生产技术来克服这些缺点。液滴微流体和微流体旋转技术最近在组织工程领域中发现了可用于生产微粒和微纤维的应用,这些微粒和微纤维可以用作支架或三维结构的基础。与标准制造技术相比,基于微流体的技术具有多种优势,例如获得具有均匀尺寸的颗粒和纤维的可能性。因此,可以获得具有极为精确的几何形状,孔分布,孔相互连接性和均匀孔径的支架。微流体也可以代表一种更便宜的制造技术。在这篇综述中,将说明基于天然聚合物的微粒,微纤维和三维支架的微流体制造。还将提供其在不同组织工程领域的应用概述。
许多生物材料表现出多尺寸孔隙度,其小,主要是纳米级孔以及大的宏观毛细管,可同时实现优化的大量传输能力和具有较大内表面的轻量级结构。意识到人工材料中这种层次的孔隙度需要经常进行复杂且昂贵的上部处理,从而限制了可扩展性。在这里,我们提出了一种方法,该方法将基于金属辅助化学蚀刻(MACE)与光刻诱导的宏观诱导的孔隙率结合在一起,以合成单晶硅与双峰孔径分布,即通过六边形的静脉内部脉冲分离,以六边形的孔隙分布,以至于六边形分布,该分离是六边形的脉络孔分布的。 穿过。MACE过程主要由金属催化的还原氧化反应引导,其中银纳米颗粒(AGNP)用作催化剂。在此过程中,AGNP充当自螺旋体的颗粒,它们沿着轨迹不断去除硅。高分辨率的X射线成像和电子断层扫描显示出较大的开放孔隙度和内部表面,可用于在高性能的储能,收获和转换中,或用于芯片传感器和精神分线。最后,层次多孔的硅膜可以通过热氧化为层次多孔的无定形二氧化硅来转化结构,该材料可能特别感兴趣,对于光流体和(生物 - )光子应用而导致其多孔具有多种形式的人工血管化。
1 兰州理工大学石油化工学院,兰州市,中国 2 甘肃农业职业学院,兰州市,中国 3 马来西亚彭亨大学工程技术学院,Lebuhraya Tun Razak,26300 Gambang,Kuantan,彭亨,马来西亚 4 甘肃省食品检验所,兰州市,中国 * 电子邮件:gaofengshi_lzh@163.com,wangguoying@lut.edu.cn 收到日期:2020 年 1 月 30 日/接受日期:2020 年 3 月 2 日/发布日期:2020 年 4 月 10 日 通过碳化电纺聚丙烯腈 (PAN)/聚甲基丙烯酸甲酯 (PMMA) 复合纳米纤维制备了 Fe3O4 /多孔碳纳米纤维 (Fe3O4 /CNF),并将其用作超级电容器的电极材料。在PAN中引入PMMA作为致孔剂,可使Fe3O4/CNF获得最佳的孔分布和更合适的比表面积,增大的孔隙率和表面积有利于电解液从电极材料表面向内部扩散。在三电极和双电极体系中对Fe3O4/CNF进行电化学测量表明,在三电极体系中的最大比电容为540Fg-1,在双电极体系中经过5000次连续循环后电容保持率为76.3%。由于氧化还原伪电容行为和双层电容的协同效应,Fe3O4/CNF电极的优异电化学性能凸显了在复合材料中添加PMMA的重要性。 关键词:氧化铁;碳纳米纤维;孔隙结构;液化碳;超级电容器 1.引言
物质的电动力描述需要构成方程,该方程将诱导的电荷ρ和半导体的电流密度j(或等效地为极化p,j = − p and p and p and p = - d iv p)to the elemagnetic finection e,b。在这方面的通用模型是Lorentz -oscillator和线性光学的Drude -Fre -Fre -Farrier模型。另一方面,对物质的非线性性质的描述主要使用电力轨道的功率序列扩展,但是在谐振或几乎谐振条件下,这种膨胀是不合适的。在某些情况下,新解决方案甚至可能“自发”在临界光线之上,并且可能导致第二次谐波产生,尽管不存在功率扩展(包括相对于光场的阶段)。因此,对半导体光学器件的现实描述需要适当地依赖光线,包括价 - 导导带持续状态,激子效应以及频带 - 效力动力学。这些现象是通过半导体bloch - 方程(SBE)始终描述的,而nowa-days成为半导体光学的标准模型。1在这种方法中,半导体对量子进行处理,从而导致一组极化和电子/孔分布函数的耦合的非线性差异方程(以此处将省略的高阶相关函数补充)。极化在(经典)麦克斯韦方程中充当源项。从这个意义上讲,SBE是一种半经典理论。[24K1](卷2)。它成功涵盖了线性和非线性现象,例如泵 - 探针,四波混合或光子 - 回声实验,如参考文献中所述。SBE在推导和应用方面具有相当大的复杂性,因此,我们将仅给出其派生的“行人版本”和一些选定的应用程序。详细信息可以在Haug和Koch的TexBook [94H1]中找到。为SBE的见面介绍,例如Sch'afer和Wegener的书[02S1]。我们以三个步骤处理该问题,如图1。(a)首先,我们研究两个级别的共鸣附近原子的动力学,并得出光学Bloch方程。在此公式中,阻尼
摘要:本研究论文探讨了用于高性能锂离子电池的多孔活性炭阳极的复杂领域,以满足对先进储能系统日益增长的需求。研究首先深入研究各种合成方法,包括物理和化学活化以及混合方法,旨在优化孔隙率和表面化学。对结构特征的详细研究包括表面积、孔分布、形态和表面化学。先进的显微镜技术和表征工具提供了对结构特征和电化学性能之间复杂相互作用的洞察。走出实验室,本文探讨了多孔活性炭阳极的潜在应用。在电动汽车中,这些阳极有望提高能量和功率密度,这是广泛采用电动交通的关键因素。对于便携式电子设备,重量轻和安全性提高使其成为有吸引力的选择。此外,该研究评估了将多孔活性炭阳极集成到电网规模储能中的可行性,有助于提高可再生能源整合的稳定性和可靠性。解决了环境问题,评估了多孔活性炭阳极的可持续性和可回收性。本文最后总结了主要发现,强调了多孔活性炭在推进锂离子电池技术方面的重要性,并提出了未来的研究方向以克服当前的挑战。大量的参考文献强调了该研究的跨学科性质,结合了多种来源,提供了该领域的全面概述。关键词:电池技术、形态、显微镜、多孔、活性、可再生。1.简介:随着世界向可持续能源解决方案转型,锂离子电池 (LIB) 在为电动汽车、可再生能源存储和便携式电子设备提供动力方面发挥着关键作用。传统阳极材料(例如石墨)在容量、循环稳定性和倍率能力方面受到限制。多孔活性炭源自多种前体,由于其高表面积、可调节的孔隙率和出色的导电性,为解决这些挑战提供了一种创新的解决方案。这些本研究的第一部分深入研究了花生壳活性炭的制备和开发,强调了多级多孔结构的创建。同时,该研究提出了一种从食物垃圾碎屑生物质中生产食物垃圾活性炭(FAC)的可扩展方法,重点介绍了其物理化学特性和多级多孔形态。