燃料处理活动的范围、集装箱装卸作业、废水处理、设施维护、设施设计和工具设计。表 I 中按主题和论文编号对应用和技术进行了索引。每种应用中的技术状态表示为生产 (P)、演示 (D)、实验 (E) 或设计 (C) 模式。操作方法或模式表示为手动 (M)、遥控 (T)、机器人自动化 (R) 或硬自动化 (H)。这些方法之间的区别定义如下:手动是直接手动操作远程工具;遥控利用手动操作的机械或机电机器的中介来操纵工具(例如主从操纵器);机器人意味着灵活的自动化或对全部或部分操作进行编程的能力;硬自动化意味着不可编程的自动机械。如果传感器集成到应用系统中,则传感器的类型在第三列中指明。表中的数字是指论文编号,根据摘要末尾的论文列表。
储能大挑战赛(ESGC)是由美国能源部研究技术投资委员会(RTIC)管理的横切工作。项目团队谨向DOE战略分析办公室的Paul Spitsen的支持,指导和管理在对ESGC的开发和执行中。我们还要感谢ESGC领导团队对这项评估的支持以及Eric Hsieh(DOE电力办公室,ESGC技术发展轨道办公室,Alejandro Moreno,DOE能源效率和可再生能源,ESGC政策和估值轨道领导者)。承认的其他贡献者包括Kara Podkaminer(DOE战略分析办公室),Sunita Satyapal,Neha Rustagi和Eric Miller和Eric Miller(氢气和燃料电池技术),Sam Bockenhauer(水力技术),水力技术),David Howell,David Howell,Steven Boyd(Steven Boyd(车辆技术))(车辆技术)过渡),休·霍(战略规划和政策办公室)和Vinod Siberry(电力办公室)。Nate Blair,Chad Hunter,Vignesh Ramasamy,Chad Augustine,Greg Stark,Greg Stark,Margaret Mann,Vicky Putsche和National Reenwable Energy Laboratory的David Feldman,Vladimir Koritarov,Vladimir Koritarov和Susan Babinec在Argonne National Laborator,Brennne National Laboratory,Brennne National Laborator,Brennne National Laborator,Brennne National smertoration,oak intry sterroration,oak and timre sterroration,oak intria贝茨(Bates),马特·帕斯(Matt Paiss),迪旺·崔(Daiwon Choi),珍妮丝·海格(Janice Haigh)和马克·韦马尔(Mark Weimar)在太平洋西北国家实验室。作者还希望承认评估中引用的行业合作伙伴提供的重大贡献和见解。
储能大挑战赛(ESGC)是由美国能源部研究技术投资委员会(RTIC)管理的横切工作。项目团队谨向DOE战略分析办公室的Paul Spitsen的支持,指导和管理在对ESGC的开发和执行中。我们还要感谢ESGC领导团队对这项评估的支持以及Eric Hsieh(DOE电力办公室,ESGC技术发展轨道办公室,Alejandro Moreno,DOE能源效率和可再生能源,ESGC政策和估值轨道领导者)。承认的其他贡献者包括Kara Podkaminer(DOE战略分析办公室),Sunita Satyapal,Neha Rustagi和Eric Miller和Eric Miller(氢气和燃料电池技术),Sam Bockenhauer(水力技术),水力技术),David Howell,David Howell,Steven Boyd(Steven Boyd(车辆技术))(车辆技术)过渡),休·霍(战略规划和政策办公室)和Vinod Siberry(电力办公室)。Nate Blair,Chad Hunter,Vignesh Ramasamy,Chad Augustine,Greg Stark,Greg Stark,Margaret Mann,Vicky Putsche和National Reenwable Energy Laboratory的David Feldman,Vladimir Koritarov,Vladimir Koritarov和Susan Babinec在Argonne National Laborator,Brennne National Laboratory,Brennne National Laborator,Brennne National Laborator,Brennne National smertoration,oak intry sterroration,oak and timre sterroration,oak intria贝茨(Bates),马特·帕斯(Matt Paiss),迪旺·崔(Daiwon Choi),珍妮丝·海格(Janice Haigh)和马克·韦马尔(Mark Weimar)在太平洋西北国家实验室。作者还希望承认评估中引用的行业合作伙伴提供的重大贡献和见解。
AC alternating current Ah ampere-hour BESS battery energy storage system BLS U.S. Bureau of Labor Statistics BMS battery management system BOP balance of plant BOS balance of system C&C controls & communication C&I civil and infrastructure CAES compressed-air energy storage DC direct current DOD depth of discharge DOE U.S. Department of Energy E/P energy to power EPC engineering, procurement, and construction EPRI Electric Power Research Institute ESGC Energy Storage Grand Challenge ESS energy storage system EV electric vehicle GW gigawatts HESS hydrogen energy storage system hr hour HVAC heating, ventilation, and air conditioning kW kilowatt kWe kilowatt-electric kWh kilowatt-hour LCOE levelized cost of energy LFP lithium-ion iron phosphate MW megawatt MWh megawatt-hour NHA National Hydropower Association NMC nickel manganese cobalt NRE non-recurring engineering NREL国家可再生能源实验室O&M操作和维护PCS电源转换系统PEM聚合物电解质膜PNNL Pacific Northwest National National Laboratory PSH PSH PSH PSH PSH泵存储Hydro PV光伏R&D研究与开发RFB RFB
如今,世界各地的太阳能电池安装速度比以往任何时候都要快,甚至在欧洲北部地区也是如此。与其他更传统的发电方式(如水力发电和煤电)相比,太阳能电池的一大区别在于,太阳能电池甚至非常适合安装在较小的设施中,例如私人或商业地产的屋顶上。然而,与此相关的一个问题是,太阳能电池的发电量随季节、时间和天气的不同而有很大差异。这意味着,不幸的是,太阳能电池很少能很好地满足房屋的电力需求,这可能会带来问题。为了解决这个问题,例如可以使用电池存储。它们的工作原理是在一天中电力生产超过需求的时段(例如晴朗的夏日中午)用太阳能电池的电力进行充电,然后在能源需求超过生产时(例如傍晚太阳落山,你打开电视并且灯亮着)放电。电池存储还可用于在停电期间供电并减轻电网连接的负载。
到2020年,我国集成电路产业与国际先进水平的差距逐步缩小,全行业销售收入年均增长20%以上,行业企业可持续发展能力显著增强。移动智能终端、网络通信、云计算、物联网、大数据等重点领域集成电路设计技术达到国际领先水平,产业生态系统初步形成。16/14nm制造工艺实现量产,封装测试技术达到国际领先水平,关键设备和材料进入国际采购体系,技术先进、安全可靠的集成电路产业体系基本建立。
储能有助于解决可再生能源间歇性问题,并在向低碳社会过渡的过程中提供可靠稳定的能源供应。市场上现有的和正在开发中的储能技术 (EST) 都有各自的优势和劣势。为特定应用选择 EST 需要评估其各种特性。可持续储能的发展需要多标准方法和强大的决策支持系统。从多种替代方案中选择最佳 EST 时要考虑的因素包括能量密度、比能、循环效率、功率密度、比功率、技术就绪水平 (TRL)、电力/能源资本成本和寿命。本研究提出了一种多智能体环境中的模糊多标准决策方法。在标准或替代方案的评估模糊或不精确的情况下,决策模型中纳入了共识度量。本文提供了一个案例研究来展示此类排名方法的使用,这些方法可以指导决策者为固定电力应用选择最佳 EST。
人们对制造具有多种功能的机器人的兴趣和成功可以追溯到铁器时代。[1] 著名的例子包括至少 2000 年前古希腊制造的显示天体信息的天文计算器 [2] 和华盛顿特区史密森尼博物馆展出的至今仍在行走和祈祷的 470 年历史的机械僧侣。然而,直到过去半个世纪,才见证了支持第一台商用机器人 Unimate 的先进技术,该机器人在汽车工业中取代了人类劳动力,负责运输和焊接巨型金属铸件。从那时起,人们创造了具有不同外观、尺寸和功能的各种机器人,用于在极端、无人环境中执行通常繁琐、高风险的任务,或执行需要超高精度、速度和可重复性的任务。到目前为止,机器人的影响和潜力已经广泛扩展,从家用电器到制造自动化,从深海导航到外太空探索,[3] 从体内靶向药物输送到精确的医疗手术。[4]
•氢存储是一个重要的(但不是主导)的CAPEX项目•诺贝尔可行性研究中的氢存储容器的估计特异性成本为$ 1,207/kg(''53T氢存储 - 260 x 20英尺的204英尺容器持有204 kg持有204 kg的204千克 @ 250 bar'''')管道,阀门和土地足迹。•无固定的存储尺寸 - 较低的成本存储供给最小LCOA