事件相机具有高时间分辨率、高动态范围、低功耗和高像素带宽等特点,为特殊环境中的物体检测提供了独特的功能。尽管有这些优势,事件数据固有的稀疏性和异步性对现有的物体检测算法提出了挑战。脉冲神经网络 (SNN) 受到人脑编码和处理信息方式的启发,为这些困难提供了潜在的解决方案。然而,在当前的实现中,它们在使用事件相机进行物体检测方面的性能受到限制。在本文中,我们提出了脉冲融合物体检测器 (SFOD),一种基于 SNN 的简单有效的物体检测方法。具体而言,我们设计了一个脉冲融合模块,首次实现了应用于事件相机的 SNN 中不同尺度特征图的融合。此外,通过整合我们在 NCAR 数据集上对主干网络进行预训练期间进行的分析和实验,我们深入研究了脉冲解码策略和损失函数对模型性能的影响。从而,我们建立了基于 SNN 的当前最佳分类结果,在 NCAR 数据集上实现了 93.7% 的准确率。在 GEN1 检测数据集上的实验结果表明,SFOD 实现了 32.1% 的当前最佳 mAP,优于现有的基于 SNN 的方法。我们的研究不仅强调了 SNN 在事件摄像机物体检测中的潜力,而且推动了 SNN 的发展。代码可在 https://github.com/yimeng-fan/SFOD 获得。
任何人都可以自由访问以“开放获取”形式提供的作品的全文。根据知识共享许可提供的作品可根据该许可的条款和条件使用。如果适用法律未免除版权保护,则使用所有其他作品均需要获得权利人(作者或出版商)的同意。
摘要 当我们学习时,大脑中会发生什么?自从 Cajal 的开创性工作以来,该领域已经取得了许多发现,表明经验如何改变单个突触的结构和功能。然而,最近的进展强调了从神经元和突触群体之间复杂的相互作用来理解学习的必要性。我们应该如何在如此宏观的层面上思考学习?在这里,我们开发了一个概念框架来弥合学习运作的不同尺度之间的差距——从突触到神经元再到行为。利用这个框架,我们探索指导跨这些尺度的感觉运动学习的原则,并为该领域未来的实验和理论工作奠定基础。关键词 神经元群体、感觉运动学习、状态空间框架、神经可塑性、维度、内部模型
摘要:我们在此报告了对酞菁氧钒 (VOPc) 的磁弛豫和量子相干性的研究,VOPc 是一种多功能且易于处理的潜在分子自旋量子比特。通过一种基于交流 (AC) 磁化率测定法、连续波 (CW) 和脉冲电子顺磁共振 (EPR) 光谱相结合的新兴多技术方法,研究了纯态 VOPc ( 1 ) 及其在同结构抗磁性宿主 TiOPc 中的晶体分散体,这些 VOPc 的化学计量比不同,即 VOPc:TiOPc 1:10 ( 2 ) 和 1:1000 ( 3 )。交流磁化率测量表明,在高达 20 K 的温度下,弛豫速率呈线性增加,这与直接机制的预期一致,但在施加的静态场值(高达约 5 T)的很宽范围内, 仍然很慢。对 3 进行的脉冲 EPR 光谱实验表明,在室温下仍具有量子相干性,T m 在 300 K 时约为 1 s,这是迄今为止分子电子自旋量子比特获得的最高值。在室温下,在这种核自旋活性环境( 1 H 和 14 N 核)中也观察到了 2 的拉比振荡,这表明这种分子半导体中量子相干性的突出稳定性,可用于自旋电子器件。
摘要 磁性随机存取存储器 (MRAM) 现在可作为嵌入式存储器从主要的 CMOS 代工厂获得。在这项研究中,我们证明了与传统 STT-MRAM 中使用的磁性隧道结相比,略微改进的磁性隧道结可用于多种用途,即磁场传感和射频振荡器。为此,垂直各向异性磁性堆栈中的 FeCoB 存储层厚度调整为 1.3-1.4 纳米,更接近从垂直到平面内各向异性的过渡区域。可以使用两种使用相同堆栈的磁场传感配置,在小场范围内实现高灵敏度或在大场范围内实现较低的灵敏度。此外,还展示了射频振荡器 GHz 检测和生成。可以设想这种多功能堆栈的进一步应用,包括非易失性和可重新编程逻辑、特殊功能(如随机数生成器和忆阻器)。
十八世纪至十九世纪,欧洲出现了一种提供大众教育的新方法。撒丁王国是这一演变的一个很好的例子:1729 年,皮埃蒙特成为欧洲第一个推出“现代”教育政策的国家,建立了公立学校系统。教育被认为是国王授予那些表现出纯洁道德和天主教信仰的优秀臣民的特许权。法国大革命引入了教育是所有公民的权利这一理念,并真正尝试改革学校,但缺乏足够的时间来建立新的学校系统。随后几年,对大众教育不感兴趣的拿破仑试图利用学校将皮埃蒙特的居民转变为法国公民,但皮埃蒙特的学校教育仍保留了一些自己的特色。1814 年,萨伏依王朝复辟时,它并没有废除法国的教育制度,而是试图为了自己的目标而改变它。尽管如此,萨沃伊还是更加重视大众教育,并试图强制所有公民上小学。过去几十年的历史表明,教育在培养忠诚的臣民方面非常重要。在十九世纪初,很明显,启蒙运动的理念被扭曲了,启蒙运动提倡学校是实现私人和公共幸福的一种方式:在接下来的几个世纪里,教育将被视为一种义务,而不是一项权利。
1 香港大学计算机科学系 QICI 量子信息与计算计划,香港薄扶林道。2 香港大学计算机科学系人工智能技术实验室,香港薄扶林道。3 北京大学前沿计算研究中心。4 北京大学计算机学院。5 麻省理工学院理论物理中心。6 牛津大学计算机科学系,英国牛津帕克斯路 OX1 3QD。7 圆周理论物理研究所,加拿大安大略省滑铁卢 N2L 2Y5 Caroline Street North 31 号。8 香港大学深圳科研创新研究院,中国深圳市南山区月星二路。9 浙江大学计算机科学与技术学院,中国。
许多太空和地面望远镜的提案都趋向于更大的主镜孔径直径,部分原因是天体物理学界希望发现类似地球的系外行星。尽管地面望远镜的尺寸可以继续增大,但太空望远镜受到单个运载火箭整流罩尺寸的限制。为了实现越来越大的太空望远镜,必须考虑在轨组装。这项工作旨在通过评估包含不同发射平台的太空望远镜架构,了解灵活设计方案对太空组装望远镜任务的前期和长期成本的影响。分析了一个 20 米望远镜的概念,并使用结构、光学、热、发射和轨迹子系统的模型来探索灵活设计对望远镜的发射成本和相对或比较复杂性的影响。探讨了发射模块不确定性的影响,并分析了灵活的设计概念,以确定在考虑不确定性后在估计成本和复杂性方面更有利的替代设计概念。分析结果表明,应在概念开发阶段的早期探索在空间望远镜架构的范围和时间上都具有灵活性的设计概念,特别是那些使用现有望远镜任务的传统设计方面的设计概念,并且可能为现有的空间组装望远镜概念提供更好的替代方案。
存储器是当今电子系统中用于数据存储和处理的关键组件。在传统的计算机架构中,由于存储器之间在操作速度和容量方面的性能差距,逻辑单元和存储器单元在物理上是分开的,从而导致冯·诺依曼计算机的根本限制。此外,随着 CMOS 技术节点的演进,晶体管变得越来越小,以提高操作速度、面积密度和能源效率,同时提供更低的驱动电流。然而,嵌入式闪存和 SRAM 等主流技术正面临着重大的扩展和功耗问题。更密集、更节能的嵌入式存储器将非常可取,特别是对于 14 纳米或更小的先进技术节点。与操纵非磁性半导体中的电荷来处理信息的传统电子设备不同,自旋电子器件基于电子自旋,提供创新的计算解决方案。为了将自旋电子学融入到现有的成熟的半导体技术中,基于自旋的器件一般设计以磁隧道结为核心结构,起到磁随机存取存储器(MRAM)的作用。
存储器是当今电子系统中用于数据存储和处理的关键组件。在传统的计算机架构中,由于存储器之间在操作速度和容量方面的性能差距,逻辑单元和存储器单元在物理上是分开的,从而导致冯·诺依曼计算机的根本限制。此外,随着 CMOS 技术节点的演进,晶体管变得越来越小,以提高操作速度、面积密度和能源效率,同时提供更低的驱动电流。然而,嵌入式闪存和 SRAM 等主流技术正面临着重大的扩展和功耗问题。更密集、更节能的嵌入式存储器将非常可取,特别是对于 14 纳米或更小的先进技术节点。与操纵非磁性半导体中的电荷来处理信息的传统电子设备不同,自旋电子器件基于电子自旋,提供创新的计算解决方案。为了将自旋电子学融入到现有的成熟的半导体技术中,基于自旋的器件一般设计以磁隧道结为核心结构,起到磁随机存取存储器(MRAM)的作用。