10.48550/arXiv.2410.06489。[2023 IF=14.7] 孙鹏展教授、Andre Geim 教授、Marcelo Lozada-Hidalgo 教授和郝光平教授为本论文的通讯作者,第一作者为IAPME 博士生季宇博士。该研究得到澳门特别行政区科学技术发展基金(FDCT,0063/2023/RIA1)、国家自然科学基金(NSFC,52322319)、澳大研究补助金(SRG2022-00053-IAPME)、澳大及马里兰大学基金会研究补助金(MYRG-GRG2023-00014-IAPME- UMDF)、欧洲研究理事会(补助金 VANDER)、英国劳氏基金会(补助金 Designer Nanomaterials)、英国研究与创新局(EP/X017745:ML-H)、英国皇家学会(URF\R1\201515:ML-H.)及哈利法大学石墨烯及二维材料研究与创新中心指导研究项目计划(RIC2D-D001:ML-H. 和 AKG)的支持。
EEE 434-591:工程师的量子力学 孟涛教授 本课程的内容(包括讲座和其他教学材料)均受版权保护。学生不得在课外分享,包括上传、出售或分发课程内容或在课程进行期间所做的笔记。任何课堂录音仅供参加本课程的学生在参加本课程期间使用。录音和录音摘录不得分发给他人。 课程描述:本课程的目的是加深对量子力学的理解。本课程将简要概述历史,并以波包为例介绍量子力学波函数及其概率解释。课程将介绍薛定谔波动方程,并讨论与现代电子设备相关的解决方案。将特别关注的现象之一是隧道效应,它允许电子“跨越”障碍。本课程还介绍了电子在超小型设备中遇到的电位以及有助于解释氢原子原子轨道的中心对称电位。本课程还将介绍薛定谔波动方程的近似解技术以及微扰理论,这有助于在已知电位受到微小扰动的情况下找到波动方程的解。
傅晓燕,国防科技大学计算机学院量子信息研究所、高性能计算国家重点实验室,中国 余金涛,数学工程与先进计算国家重点实验室,中国 苏星,国防科技大学计算机学院,中国 蒋涵如,鹏程实验室量子计算中心,中国 吴华,华东师范大学上海市可信计算重点实验室,中国 程福成、邓曦、张金荣,鹏程实验室量子计算中心,中国 金磊、杨逸航、徐乐、胡春超,郑州大学信息工程学院,中国 黄安琪、黄光耀、强小刚、邓明堂、徐萍、徐伟霞,国防科技大学计算机学院量子信息研究所、高性能计算国家重点实验室,中国 万伟刘先生,国防科技大学计算机学院计算机科学系,中国 张宇先生,中国科学技术大学计算机科学与技术学院,中国
1海洋环境科学的国家主要实验室,沿海和湿地生态系统的主要实验室(教育部),沿海和海洋管理研究所,环境与生态学院,Xiamen University,Xiamen University,Xiamen,Fujian,中国,2个国家观察和研究站中国藤本富州气象学科学,南中国海遥感,测量和地图合作应用技术创新中心,南中国海开发研究所,自然资源部,广东,广东,中国广东,中国广东,中国,尤里奇,尤里斯大学的大气层学院中国广东的朱海,南方海洋科学与工程实验室(Zhuhai),珠海,中国广东,8号生态学学院,太阳森大学,孙森大学,深圳,广东,中国,中国,9 nanjing
翻译团队 李欣 薛蕾 杨莉 孙莎莎 许晓兰 出版团队 朱菊华 张俊 葛洁仪 © 2022 上海国际问题研究院 © 2022 清华大学国际安全与战略研究中心 本文所表达的观点为作者个人观点,并不一定反映机构立场。保留所有权利。未经上海国际问题研究院和/或清华大学国际安全与战略研究中心书面许可,不得以任何形式或任何方式复制或传播本出版物的任何部分。请直接咨询: 上海国际问题研究院 中国上海市徐汇区田林路195-15号 邮编:200233 电话/传真:+86 21 64850100 http://www.siis.org.cn 本出版物可在机构网站上免费下载。
主席:Sophie Scott,伦敦大学学院 财务:Eva Gutierrez-Sigut,埃塞克斯大学 秘书:Daniela Sammler,马克斯·普朗克经验美学研究所,法兰克福/美因河畔 项目委员会主席:William Matchin,南卡罗来纳大学 学生/博士后代表:孙欣,不列颠哥伦比亚大学 候任主席:Jonathan Peelle,东北大学 候任财务:Francesca Branzi,利物浦大学 候任秘书:Simona Mancini,巴斯克认知、大脑和语言中心 项目委员会候任主席:Katrien Segaert,伯明翰大学 前任主席:Liina Pylkkänen,纽约大学 前任财务:Andrea E. Martin,拉德堡德大学 前任秘书:Yanchao Bi,北京师范大学 前任项目委员会主席:Stephen M. Wilson,昆士兰大学
具有连续体束缚态的硅槽形纳米立方体高效二次谐波产生 方慈哲,杨奇宇,袁清晨,顾林鹏,甘雪涛*,邵瑶,刘燕,*韩根泉,郝越 方聪,杨倩,刘英教授,韩刚教授,郝英教授 西安电子科技大学微电子学院宽禁带半导体技术国家重点实验室,西安 710071,中国 电子邮件:xdliuyan@xidian.edu.cn 袁倩,顾琳,甘雪教授 西北工业大学物理科学与技术学院,工业和信息化部光场操控与信息获取重点实验室,陕西省光信息技术重点实验室,西安 710129,中国 电子邮件:xuetaogan@nwpu.edu.cn Y.邵 国家电网上海能源互联网研究院,上海市浦东新区李冰路251号,201210,中国 刘宇 教授 智能芯片与器件研究中心 浙江省重点实验室,杭州,311121,中国 关键词:二次谐波产生,连续体中的束缚态,硅,介电纳米结构 具有中心对称性的光学材料,例如硅和锗,不幸的是
摘要 牵引传动系统作为高速列车的动力系统,是保障高速列车安全稳定运行的关键系统之一。故障测试验证平台是保证高速列车实时故障诊断方法有效应用的重要途径。针对高速列车牵引传动系统故障测试验证平台面临的挑战性问题,分析了故障注入、仿真可靠性评估、算法性能评估、仿真平台实现的方法与技术,并总结了针对上述问题的一些解决方案。在此基础上,提出并搭建了集高速列车实时仿真、故障场景真实模拟、随机故障测试和故障诊断算法评估为一体的高速列车牵引传动系统故障测试验证平台。最后对高速列车安全监测与验证平台未来的研究方向进行了总结和展望。关键词故障测试,验证平台,故障注入,测试评估,高速列车牵引传动系统引用杨超,彭涛,杨春华,陈志文,桂伟华。高速列车牵引传动系统故障测试与验证仿真平台。自动化学报,2019,45(12):2218−2232
随着BESS规模的进一步扩大,分布式发电机(DG)之间会存在区域差异。此外,集中控制的通信网络复杂且成本高。这些限制制约了集中控制的发展。研究人员正在研究分散方法,以实现本地化控制并减少通信负担。何等[9]提出了逆功率因数控制,可以实现同步和功率共享。孙等[10]分析了功率传输特性,提出了一种fP/Q控制,可更广泛地应用于电阻-电容(RC)负载。针对并网模式,提出了一种完全分散的控制方法[11],该方法使用下垂方案控制来实现模块间的同步。然而,这些分散方法没有考虑到特性和功能,例如提供惯性控制以实现友好的电网连接并实现每个电池模块中的SOC平衡。为了实现这些目标,许多研究人员一直专注于电池特性及其在电网或可再生能源系统中的功能。
QUINGO 开发团队: 傅学锋,国防科技大学计算机学院量子信息研究所、高性能计算国家重点实验室,中国 俞金涛,数学工程与先进计算国家重点实验室,中国 苏星,国防科技大学计算机学院,中国 蒋涵如,鹏程实验室量子计算中心,中国 吴华,华东师范大学上海市可信计算重点实验室,中国 程福成、邓曦、张金荣,鹏程实验室量子计算中心,中国 金磊、杨一航、徐乐、胡春超,郑州大学信息工程学院,中国 黄安琪、黄光耀、强小刚、邓明堂、徐萍、徐伟霞,国防科技大学计算机学院量子信息研究所、高性能计算国家重点实验室,中国国防科技大学计算机学院,中国 刘万伟,国防科技大学计算机学院,中国 张宇,中国科学技术大学计算机科学与技术学院,中国 邓宇欣,华东师范大学上海市可信计算重点实验室,中国 吴俊杰,国防科技大学计算机学院量子信息研究所、高性能计算国家重点实验室,中国 冯远,悉尼科技大学量子软件与信息中心,澳大利亚