Gartner 的数据显示 , 未来几年人工智能的发展将进一步加速 , 到 2020 年人工智能和机器学习将成为超过 30 % 的 CIO 的五大投
plaa m makingabilit p e,whichcanp, the:lightife for:lightife fim⁃taietassignmietassignmient;diepieinfoifieinfoightimciemientlieaightimning;q⁃l
智能嵌入式视觉应用的设计变得前所未有 的快捷而安全,这要归功于围绕 CEVA-XM6 DSP 而构建的全方位视觉平台。该平台包含 CEVA 深度神经网络( CDNN )编译器图表、计 算机视觉软件库以及一系列算法。
摘要 — 随着磁共振成像 (MRI) 等用于测量大脑活动的非侵入性技术的最新进展,通过图形信号处理 (GSP) 研究结构和功能性大脑网络已获得显著关注。GSP 是揭示大脑功能和结构之间相互作用的关键工具,能够分析由感兴趣区域之间的连接定义的图形——在此上下文中称为连接组。我们的工作代表了在这个方向上迈出的又一步,通过探索图形表示学习领域的监督对比学习方法。这种方法的主要目标是生成主题级别(即图形级别)的向量表示,将具有相同标签的主题聚集在一起,同时将具有不同标签的主题分开。这些连接组嵌入来自图神经网络编码器-解码器架构,该架构共同考虑了结构和功能连接。通过利用数据增强技术,所提出的框架在使用人类连接组计划数据的性别分类任务中实现了最先进的性能。更广泛地说,我们以连接组为中心的方法论的进步支持了使用 GSP 发现更多大脑功能的良好前景,并可能对理解神经退行性疾病的异质性以实现精准医疗和诊断产生影响。
图1。使用变压器模型生成样品嵌入/分类和上下文敏感分类单元嵌入的工作流程。输入(a)是表示为相对丰度向量的样本,首先要经过预处理步骤(b),以生成变压器模型(d)的文本样输入(c)。变压器模型生成样品嵌入(H Cls),该样本嵌入(H Cls)通过样本分类层(E)产生特定任务样本级别预测(F)。变压器模型还为样本中每个分类单元生成上下文敏感嵌入(G)。出现在不同样本中的相同分类单元可能会因上下文差异而具有不同的嵌入。
研究团队开发了自适应采样器ASr,一种基于任务多样性、熵和难度动态加权的分 布生成函数,以优化元学习模型的泛化性能,并为此提出了一种通用的元学习算法。 研究团队在多个基准数据集和不同学习场景下对所提方法进行了广泛实验,包括小 样本学习、跨域学习、多域学习和增量学习等,并从多个维度对方法的有效性、泛化性 、计算效率等进行了评估和对比,结果证明了所提方法在不同网络架构和元学习框架下 的优越性能和通用性。
0.05), 且早发型 PE 组 Gal-1 水平和 Gal-9 水平亦显着高于晚发型 PE 组 ( P <0.05)。 早发型 PE 组和晚发型 PE
结构在运行时可以做到即使某一个模态信息缺失整个网络也能取得不错的效果 , 在多通道情感识别、 语义理解、目标学习等领域取得很好的效果 .尽管如此 , 这类网络相对于任务来说还是相对 “ 具体 ”, 如 果要换一个任务 , 用户就需要修改网络结构包括重新调整参数 , 这使得深度神经网络结构的设计是一 个耗时耗力的过程 .因此研究者们希望一个混合的神经网络结构可以同时胜任多个任务 , 以减少其在 结构设计和训练方面的工作量 .鉴于此 , 研究者开始致力于首先采用大数据联合训练构建出多通道联 合特征分享层 , 然后在识别阶段可以同时进行多任务处理的深度多模态融合结构 .如 Google 的学者 尝试建议一个统一的深度学习模型来自适应地适配解决不同领域、不同数据模态下的多个不同类型 的任务 , 且在特定任务上的性能没有明显损失的模型 [71] .该模型构架请见文献 [71] 的图 2, 由处理输 入的编码器、编码输入与输出混合的混合器、混合输出的解码器 3 个部分构成 , 文献 [71] 的图 3 给 出了这 3 个部分的详细描述 .每一个部分的主体结构类似 , 均包含多个卷积层、注意力机制和稀疏门 控专家混合层 .其中 , 不同模块中的卷积层的作用是发现局部模式 , 然后将它泛化到整个空间 ; 注意力 模块和传统的注意力机制的主要区别是定时信号 , 定时信号的加入能让基于内容的注意力基于所处的 位置来进行归纳和集中 ; 最后的稀疏阵列混合专家层 , 由前馈神经网络 ( 专家 ) 和可训练的门控网络组 成 , 其选择稀疏专家组合处理和鉴别每个输入 .