超嗜热菌。细菌的热破坏 - D、F 和 Z 值、TDP 和 TDT ii。pH:中性粒细胞、嗜酸菌和嗜碱菌 iii。渗透压 - 等渗、低渗和高渗环境、嗜干菌和嗜盐菌。iv。重金属 v。辐射 - 紫外线 C) 跨细胞膜运输 - 扩散、主动运输
珊瑚 - 阿尔加尔共生的代谢动力学从受精到定居点确定1关键的珊瑚能量脆弱性2 3作者和作者分支机构4 5 Ariana S. Huffmyer 1,2,6 *,Kevin H. Wong 3,Wong 3,Danielle M. Becker 2,Emma Strand 4,Emma Strand 4,Tali Mass 5,Tali Scii 6 M.美国华盛顿州华盛顿州华盛顿市9 2美国罗德岛大学生物科学系,美国,美国,美国,金斯敦10 3罗森斯特海洋与大气科学学院,海洋生物学系,海洋生物学系和11个生态学,迈阿密迈阿密大学,佛罗里达州迈阿密大学,美国佛罗里科学,14 Haifa大学,山Carmel,Haifa,Haifa,以色列15 6 LEAD联系Ashuffmyer@gmail.com 16 17 *通讯:Ariana S. Huffmyer,Ashuffmyer@gmail.com 18 19摘要20 21气候变化加速珊瑚礁的下降,并危及22生态系统恢复的招聘必不可少。 成年珊瑚依靠其共生藻类23(共生性藻类)的重要营养交换,但是这种依赖从受精到24种招募的动力和敏感性被认为是被认为的。 我们调查了蒙蒂普拉·马蒂塔(Montipora Capitata)的13个发育阶段的生理,代谢组和25个转录组变化,这是26个夏威夷的珊瑚,该珊瑚在夏威夷26中继承了从父母到鸡蛋的共生体。 我们发现胚胎发育27取决于母体提供的mRNA和脂质,并在游泳幼虫中迅速转移到了共生体衍生的28营养。 共生的密度和光合作用峰一旦游泳至燃料29层幼虫分散。 44Carmel,Haifa,Haifa,以色列15 6 LEAD联系Ashuffmyer@gmail.com 16 17 *通讯:Ariana S. Huffmyer,Ashuffmyer@gmail.com 18 19摘要20 21气候变化加速珊瑚礁的下降,并危及22生态系统恢复的招聘必不可少。成年珊瑚依靠其共生藻类23(共生性藻类)的重要营养交换,但是这种依赖从受精到24种招募的动力和敏感性被认为是被认为的。我们调查了蒙蒂普拉·马蒂塔(Montipora Capitata)的13个发育阶段的生理,代谢组和25个转录组变化,这是26个夏威夷的珊瑚,该珊瑚在夏威夷26中继承了从父母到鸡蛋的共生体。我们发现胚胎发育27取决于母体提供的mRNA和脂质,并在游泳幼虫中迅速转移到了共生体衍生的28营养。共生的密度和光合作用峰一旦游泳至燃料29层幼虫分散。44相反,在30个变形,沉降和钙化期间,呼吸需求显着增加,反映了这种能量密集型形态学31重组。共生植物的增生是由共生铵同化32驱动的,珊瑚宿主中氮代谢几乎没有证据。随着发育的进展,33个宿主会增强氮隔离,调节共生体种群,并确保固定碳的34转移以支持变态,并具有代谢组和转录组35碳水化合物可用性的指标。尽管藻类共生群落群落保持36个稳定,但细菌群落随着个体发育而转移,与Holobiont代谢37重组有关。我们的研究揭示了开发过程中的广泛代谢变化,38越来越依赖共生营养。变形和沉降是针对预测的气候场景的最大39个关键时期,破坏了40个共生的稳定。相对于敏感的41早期生命阶段,这种高度详细的共生营养交换提供了理解和预测营养的基本知识42共生42共生融合,特别是在气候43变化的未来中,珊瑚生存和招募。
近年来,随着实时流媒体技术的快速发展,电子商务实时流已经成为一种重要的消费者购物体验形式(Luo X.等,2024; Luo L.等,2024)。同时,人工智能技术的进步导致了企业对虚拟流的广泛采用,因为它们的优势,例如成本效益,高生产率和24/7的可用性。然而,尽管面临着巨大的市场机会,但虚拟流媒体也遇到了挑战,包括缺乏社会存在和简短的消费者互动时间(Gao等,2024)。为了增强互动性并在现场流媒体会话中创造了更具吸引力的氛围,虚拟流媒体已经开始模仿人类流媒体的语言和行为,尤其是通过采用亲切的昵称来与消费者建立情感联系(Leech,2014; Wang,2022; Cheng,202222)。尽管做出了模仿人类互动方式的努力,但深情的昵称在人与光明关系中的影响是否类似于人际关系中的人际关系,这是进一步探索的关键问题。这个问题不仅对指导虚拟流媒体的沟通策略具有重要的实际含义,还增强了我们对消费者与服务机器人之间的人类关系的理解。
摘要 __________________________________________________________________________________________________ 量子生物学是一个创新领域,它将量子力学和生物学相结合,探索量子现象如何影响生物过程。本综述讨论了量子生物学的基本原理、它在医学、材料科学和能源生产中的潜在应用,以及其进展的伦理影响。通过了解生命的量子复杂性,我们可以深入了解疾病机制,开发创新材料并利用可持续能源。量子力学对于理解原子和亚原子行为至关重要,它是量子生物学的基础,量子生物学研究光合作用、嗅觉和酶催化等过程。关键原理包括叠加、纠缠和隧穿,这些原理可以提高生物效率、灵敏度和精度。量子生物学的潜力涵盖各个领域:在医学和药学中,它可以带来新的诊断工具和疗法;在材料科学中,它可以启发电子、储能和传感的量子材料;在能源生产中,它可以通过光合作用的见解为可持续能源发展提供信息。然而,道德考虑至关重要。量子增强医疗技术可能会扩大医疗保健差距,而先进的量子材料可能会对社会产生复杂的影响。负责任的发展需要开放的对话和道德框架。量子生物学的未来充满希望,持续的研究和跨学科合作有望产生创新发现,促进可持续和繁荣的未来。关键词:酶催化、医学、光合作用、量子生物学、量子相干性、量子隧穿。
11 美国科罗拉多州奥罗拉市科罗拉多大学安舒茨医学院肿瘤内科 12 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心胸部和胃肠道恶性肿瘤分部。13 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心免疫肿瘤学中心。14 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心外科肿瘤学项目。15 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心泌尿生殖系统癌症发病机制实验室 16 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心泌尿生殖系统恶性肿瘤分部。* 通讯作者:danhtai.hoang@anu.edu.au (DTH)、eric.stone@anu.edu.au (EAS) 和 eytan.ruppin@nih.gov (ER)
Lena Tveriakhina,1,8 Gustavo Scanavachi,2,3,3 Emily D. Egan,1 Ricardo Bango da Cunha Correia,2,3 Alexandre P. Martin,1 Julia M. Rogers,1 Jodemy S. Jeremy S. Yodh,5 Jon C.美国马萨诸塞州波士顿,马萨诸塞州波士顿的Blavatnik研究所生物化学和分子药理学系美国2115年2月2日 Physics, Harvard University, Cambridge, MA 02138, USA 6 Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA 7 Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA 8 These authors contributed equally 9 Lead contact *Correspondence: kirchhausen@crystal.harvard.edu (T.K.),stephen_blacklow@hms.harvard.edu(s.c.b.)https://doi.org/10.1016/j.devcel.2024.03.021
通过改造与葡萄糖代谢(TCA 循环或乙醛酸循环)相关的基因,可以增强琥珀酸的产量 [8]。例如,过表达编码丙酮酸羧化酶 (pyc) 的单个基因可显著提高谷氨酸棒杆菌乳酸脱氢酶 1 敲除突变体中的琥珀酸产量 [5]。然而,与几种基因敲除突变体不同,谷氨酸棒杆菌野生型可用于在厌氧条件下生产琥珀酸 [45]。表 3 比较了不同重组谷氨酸棒杆菌菌株和其他微生物的琥珀酸产量。有趣的是,从水解产物中生产琥珀酸的产量往往远低于使用纯葡萄糖作为碳源所获得的产量,并且根据细胞干重 (CDW,细胞密度) 和发酵时间显示出广泛的产量范围。这些结果表明,碳源和
1理论物理学,巴斯克大学(UPV/EHU),西班牙毕尔巴奥2多斯蒂亚国际物理中心(DIPC)(DIPC),西班牙圣塞巴斯蒂,西班牙3号,3 ikerbasque 3 Ikerbasque,Basque,Basque,Basque,Basque,Basque,Basque Science,Spain 4 Wigner研究中心4 Wigner研究中心