在航空航天工业中,安全关键结构的安全寿命疲劳设计过程中存在保守性。这种保守性的存在是因为需要使用折减系数来抵消疲劳的概率性质,并导致部件不得不提前退役。了解不确定性的来源以及它们如何从设计输入传递到部件的安全寿命是挑战当前所需的保守性的第一步。基于方差的灵敏度分析 (VBSA) 可用于将过程输出中的不确定性分配给过程输入中的不确定性。本文使用起落架案例研究和“适合所有人的灵敏度分析”(SAFE) 工具箱探讨了将 VBSA 方法应用于安全寿命设计过程的可行性。VBSA 结果发现,表示与在部件内累积最多疲劳损伤的循环载荷相关的失效循环次数的参数对部件安全寿命值的不确定性贡献最大。虽然发现 VBSA 的总体概念适合进一步应用,但本文提出的具体实现显示出局限性,如果要在未来的工作中应用 VBSA 方法,则需要纠正这些局限性。
3.6.2 裂纹扩展................................................................................................................59 3.6.3 临界裂纹长度或失效...............................................................................................61 3.7 安全寿命和故障安全定义及设计理念........................................................................62 3.7.1 安全寿命设计.............................................................................................................63 3.7.2 故障安全设计和损伤容限分析.........................................................................................64 3.7.2.1 安全寿命和故障安全设计的简要示例.........................................................................64 3.8 焊接和裂纹起始点的介绍....................................................................................................66 3.8.1 残余应力.............................................................................................................................67 3.8.2 焊接缺陷.............................................................................................................................68 3.8.3 应力集中.............................................................................................................................68 3.8.4 钢和合金中的裂纹起始点....................................................................................................69铝................................................................................69 3.8.5 铝制零件的补焊....................................................................................70 3.9 高速船用新型铝合金及焊接技术........................................................70 3.9.1 新型海洋级铝合金,牌号 5383.........................................................................70 3.9.1.1 5383 的疲劳强度.........................................................................................................72 3.9.2 新型海洋级铝合金,牌号 RA7108.........................................................................74 3.9.3 新型海洋级铝合金 5059.........................................................................................76 3.9.4 搅拌摩擦焊接.........................................................................................................77 3.10 参考文献.........................................................................................................................79 4.DNV 和其他行业疲劳分析标准.........................................................................................115 5.1 DNV 高速船疲劳分析分类说明 30.9 ................................116 5.2 协助船舶设计师的其他行业标准.....................................................118高速铝船的疲劳设计................................................................................................................81 4.1 Palmgren-Miner 累积损伤疲劳评估....................................................................................82 4.2 确定要分析的细节................................................................................................................84 4.3 加载历史的开发................................................................................................................86 4.3.1 船长和速度对高速船加载历史的影响.......................................................................87 4.3.2 用于船舶加载历史的概率分布....................................................................................89 4.3.3 雨流和储层循环计数法....................................................................................................90 4.3.4 雨流循环计数法.............................................................................................................91 4.3.5 储层循环计数法.............................................................................................................91 4.4 应力直方图的开发.....................................................................................................................92 4.4.1 使用频谱分析方法开发应力直方图.....................................................................................93 4.5 应力计算和应力集中................................................................................................95 4.5.1 行业规范中的设计应力...............................................................................................95 4.5.2 关于应力的进一步讨论..............................................................................................96 4.5.2.1 结构中的名义应力.........................................................................................................97 4.5.2.2 结构应力.........................................................................................................................98 4.5.2.3 热点应力.........................................................................................................................100 4.5.2.4 缺口应力.........................................................................................................................100 4.5.2.5 焊接对应力的影响....................................................................................................101 4.5.2.6 制造缺陷及其对名义应力的影响....................................................................................102 4.6 确定适当的 S/N 曲线.....................................................................................................103 4.6.1 程序.....................................................................................................................104 4.7替代应力直方图方法................................................................................................112 4.8 参考文献....................................................................................................................113 5.
结构技术学科涵盖任何与飞机和/或航天器(例如运载火箭)相关的科学和技术,包括设计、分析、计算机建模、优化、制造和测试。其主题包括传统结构和创新概念的最新发展,从优惠券和组件到车辆,包括金属、复合材料和/或混合材料。它还涵盖当前方法的改进、改进和发展,以及结构修复、损伤、疲劳、断裂、稳定性和制造方面的探索。我们也鼓励提交有关耐久性、损伤容限、老化、故障安全和/或安全寿命方面进展的论文。我们欢迎有关最佳实践、历史经验教训和结构应用进展的论文。我们也强烈鼓励提交有关上述未明确提及的其他结构主题的论文。
机身结构。结构强度的适航要求;结构分类,一级、二级和三级;故障安全、安全寿命、损伤容限概念;区域和站点识别系统;应力、应变、弯曲、压缩、剪切、扭转、拉伸、环向应力、疲劳;排水和通风规定;系统安装规定;雷击保护规定。应力蒙皮机身、框架、纵梁、纵梁、舱壁、框架、双层板、支柱、拉杆、横梁、地板结构、加固、蒙皮方法和防腐保护的建造方法。吊架、稳定器和起落架附件;座椅安装;门:构造、机制、操作和安全装置;窗户和挡风玻璃构造;燃料储存;防火墙;发动机支架;结构组装技术:铆接、螺栓连接、粘合;表面保护方法、铬酸盐处理、阳极氧化、喷漆;表面清洁。机身对称性:对准和对称性检查方法。
摘要:马来西亚皇家空军大多数战斗机的机身结构已服役 10 至 20 年。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性成为其适航性评估的依据。使用各种无损检测方法确定飞机结构在超过 10 年的运行后的当前状况,并总结了它们的结果。此外,虽然有六个关键位置,但选择了翼根,因为它最有可能出现疲劳失效。使用模拟分析进一步分析了疲劳寿命。这有助于开发维护任务卡,并最终有助于延长战斗机的使用寿命。RMAF 使用安全寿命或损伤容限的概念作为其疲劳设计理念,采用了飞机结构完整性计划 (ASIP) 来监测其战斗机的结构完整性。在当前预算限制和结构寿命延长要求下,RMAF 已着手采用无损检测方法和工程分析。该研究成果将增强马来西亚皇家空军舰队其他飞机平台的 ASIP,以进行结构寿命评估或使用寿命延长计划。
关键的飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用疲劳寿命评估和裂纹扩展预测来监测其关键部件的结构完整性。使用了各种方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。选择水平稳定器凸耳是因为它具有最高的疲劳失效可能性。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 Nastran 来模拟裂纹扩展。使用数值结果验证了裂纹扩展分析的结果。结论是,基于疲劳寿命循环,结构状态不会受到严重损伤,其失效大约在100万次循环左右,而耳片底部裂纹扩展位置是关键位置。研究成果将以延长耳片的结构寿命为目标。
本文旨在研究和调查动态载荷下飞机结构失效的不同方法。飞机结构失效会导致灾难性的后果,导致升力和飞机大量损失。因此,调查导致飞机失效的主要原因非常重要。本文讨论了飞机机翼结构材料失效的主要原因以及疲劳失效。在调查的同时,还通过不同的案例研究及其结果总结了未来的补救措施。飞机机翼采用高强度材料制造,因此它们可以在较长时间的飞行中承受较大的载荷。疲劳失效监测现已纳入所有飞机。故障监测系统收集计算安全寿命、损伤寿命或检查整架飞机所需时间所需的所有数据。本文介绍了军用敏捷飞机的疲劳监测系统和工具。它全面回顾了军用飞机及其当前系统中使用的所有技术。通过不同故障分析方法的案例研究,提出了一些主要问题及其纠正措施。本综述论文包括不同的测试、分析及其步骤。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性计划 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择翼根是因为它最有可能疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果与数值结果进行了验证。结论是,基于疲劳寿命循环,机翼根部结构状况不会受到严重损坏的影响,无论是通孔还是贯穿侧裂纹,其失效时间约为 30 至 100 年。因此,其结构寿命可以延长。研究成果将致力于延长飞机机翼的结构寿命。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性程序 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择了机翼根部,因为它最有可能出现疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果通过数值结果进行了验证。结论是,根据疲劳寿命循环,机翼根部结构状态不会受到严重损伤,无论是通孔还是贯穿侧裂纹,其失效时间都约为30至100年。因此,其结构寿命可以延长。研究成果将对延长飞机机翼的结构寿命产生重要影响。