1 英国布里斯托大学生命科学学院生理学、药理学和神经科学学院 2 英国布里斯托大学健康科学学院布里斯托医学院转化健康科学肌肉骨骼研究组 3 意大利拉奎拉大学生物技术和应用临床科学系 4 马耳他大学健康科学学院应用生物医学科学系 5 马耳他大学分子医学和生物银行中心 6 奥地利林茨约翰内斯开普勒大学儿科和青少年医学系 7 意大利骨病研究基金会 (FIRMO) 8 西班牙桑坦德坎塔布里亚大学瓦尔德西利亚医院内科系 9 荷兰鹿特丹伊拉斯姆斯大学医学中心内科系荷兰 10 约阿尼纳大学医学院卫生与流行病学系,希腊 11 布朗大学公共卫生学院健康研究综合中心、卫生证据综合中心、政策与实践中心,美国罗德岛州普罗维登斯 12 约阿尼纳大学洛阿尼纳大学研究中心生物科学研究所,希腊 13 伦敦国王学院生命科学与医学院生命过程科学学院双胞胎研究与遗传流行病学系,英国伦敦 14 盖伊和圣托马斯 NHS 基金会内分泌学系,英国伦敦 15 马库斯老龄化研究所、希伯来老年生活和医学中心医学系和哈佛医学院、麻省理工学院和哈佛大学布罗德研究所,美国马萨诸塞州剑桥 16 IRCCS 里佐利骨科研究所罕见骨骼疾病系,意大利博洛尼亚17 伯明翰大学代谢与系统研究所,英国伯明翰 18 马拉加大学,西班牙马拉加 19 赫尔辛基大学儿童医院和赫尔辛基大学医院,芬兰赫尔辛基 20 赫尔辛基大学医学院临床和分子代谢研究项目,芬兰赫尔辛基 21 Folkhälsan 研究中心,Folkhälsan 遗传学研究所,芬兰赫尔辛基 22 安特卫普大学医学遗传学系,比利时安特卫普 23 鲁汶天主教大学人类遗传学系,比利时鲁汶
学术成员:阿姆斯特丹大学、安特卫普大学、希腊雅典比雷埃夫斯大学、母校博洛尼亚大学、波恩大学、布加勒斯特经济学院 (ASE)、都柏林三一学院、大学爱丁堡法兰克福金融学院 &管理学、歌德大学、根特大学、赫尔辛基大学、莱顿大学、鲁汶大学、葡萄牙天主教大学、里斯本大学、卢布尔雅那大学、伦敦玛丽女王大学、卢森堡大学、自治大学、马德里,马德里卡洛斯三世大学,大学西班牙马德里康普顿斯大学、美因茨约翰内斯·古腾堡大学、马耳他大学、圣心天主教大学、塞浦路斯大学、拉德堡德大学、BI 挪威商学院、先贤祠 - 索邦大学(巴黎第一大学)、先贤祠阿萨斯大学(巴黎) 2)、斯德哥尔摩大学、塔尔图大学、维也纳、弗罗茨瓦夫大学、苏黎世大学。
亲爱的同事,我很高兴地宣布,B-orl年度国会2024年的最终计划。会议“跨越生命,平衡和持续的ENT”的主题将涵盖小儿和成人患者在ENT领域的最新创新。该计划反映了我们在UZA的当地教师的努力,UZA邀请了来自不同的企业和其他学科的国家和国际同事。专业ENT协会将在周六早上为ENT受训者和学员计划的主人提供专业发展,绿色ENT和早餐会议。该行业的代表将渴望在咖啡和午餐休息期间为您提供有关新产品,工具和工具的最新信息。周五晚上的国会晚餐将在历史地点举行,具有出色的烹饪传统:餐厅Anthony van Dijck爵士在“ De Vlaaikensgang”中。,最后,年度国会是一个在友好氛围中与同事见面和聊天的绝佳机会,并参观了安特卫普。我期待在2024年B-orl年度大会上与您会面,我想鼓励您利用早期鸟类的注册费。最亲切的问候,教授。 Boudewyns总裁B-orl 2024
Philip Nakashima 副教授 1、Yu-Tsun Shao 博士 2,3、Zezhong Zhang 博士 4,5,6、Andrew Smith 博士 7、Tianyu Liu 博士 8、Nikhil Medhekar 教授 1、Joanne Etheridge 教授 7,9、Laure Bourgeois 教授 1,9、Jian-Min Zuo 教授 10,11 1 澳大利亚克莱顿莫纳什大学材料科学与工程系,2 美国洛杉矶南加州大学 Mork Family 化学工程与材料科学系,3 美国洛杉矶南加州大学纳米成像核心卓越中心,4 比利时安特卫普大学材料研究电子显微镜 (EMAT),5 比利时安特卫普大学 NANOlab 卓越中心,6 英国牛津大学材料系,7 克莱顿莫纳什大学物理与天文学院,澳大利亚,8 日本仙台东北大学先进材料多学科研究所,9 澳大利亚克莱顿莫纳什大学莫纳什电子显微镜中心,10 美国厄巴纳-香槟伊利诺伊大学材料科学与工程系,11 美国厄巴纳-香槟伊利诺伊大学材料研究实验室,背景包括目标我们着手对非均质晶体材料中纳米结构周围的键合电子密度进行首次位置分辨测量。迄今为止,所有键合电子密度和电位研究仅涉及均质单相材料;然而,大多数为我们服务的材料由于其包含的纳米结构而具有混合特性,这通常是设计使然。我们还注意到,材料缺陷无处不在且不可避免,因此我们可以从单一均质晶体的名义上完美的区域推导出材料特性的假设在范围和“实际”应用方面是有限的。这项工作旨在提供一种新功能,用于查询纳米结构和非均质材料中纳米结构周围的键合电子密度。我们的首次尝试涉及名义纯度(99.9999+%)铝中的纳米空隙。在实现这一目标的过程中,我们必须准确绘制空位浓度并确定空位引起的相关晶格收缩,以便能够精确测量晶体势和电子密度的傅立叶系数(结构因子)(误差小于 0.1%),因此我们取得了多项发现。© 作者,由 EDP Sciences 出版。这是一篇开放获取文章,根据知识共享署名许可 4.0 条款分发(https://creativecommons.org/licenses/by/4.0/)。
a 法国巴黎巴斯德研究所全球健康系、人类学与疾病出现生态学研究中心 b 比利时安特卫普热带医学研究所社会生态健康研究中心 c 比利时鲁汶天主教大学药物获取研究中心 d 比利时鲁汶天主教大学哲学研究所现象学与大陆哲学研究中心胡塞尔档案馆 e 英国伦敦卫生与热带医学院传染病流行病学系 f 比利时鲁汶天主教大学微生物学、免疫学与移植系、比利时鲁汶未来研究所 Rega 医学研究所、临床与流行病学病毒学研究所 g 葡萄牙里斯本新里斯本大学热带卫生与医学研究所全球健康与热带医学中心 h 鲁汶大学青少年保健、环境与健康疫苗学中心比利时鲁汶 i 英国疫苗信心项目和伦敦卫生与热带医学院 j 日本长崎长崎大学热带医学与全球健康学院
抽象的人类增强是一个蓬勃发展的研究领域,旨在通过发展技术改进作为人体不可或缺的一部分来扩大人类能力。可以为任何人制造人类增强产品,从希望增强其人类能力的健康用户到面临暂时或永久残疾,身体障碍或危险情况的用户,迫使他们使用这些产品。本文试图通过提供对概念及其相关术语的详尽表述来介绍读者的人类增强领域,以开发更坚实的结构基础。此外,给出了该场的分类和维度分类。基于这些发现,我们提出了一个新颖的框架,以两种分类的图表呈现形式的形式,这可以使产品设计师通过确定其在图中的位置来更好地理解和表征他们正在设计的人类增强产品的类型。最后,通过引入和分类几种重要的人类增强产品来评估所提出的框架,其中大多数已被证明超越了人类的能力。关键字:人类的增强,研究方法和方法,可视化,产品结构联系:de Boeck,穆里尔大学,安特卫普大学比利时穆里尔(Belgium Muriel.deboeck)@uantwerpen.be
比利时鲁汶天主教大学细胞与分子医学系细胞应激与免疫 (CSI) 实验室; b 比利时鲁汶天主教大学鲁汶癌症研究所肿瘤学系实验肿瘤学实验室; c 捷克共和国布拉格查理大学第二医学院和莫托尔大学医院免疫学系; d Sotio Biotech,捷克共和国布拉格; e 代谢组学和细胞生物学平台,法国巴黎萨克雷大学古斯塔夫鲁西癌症中心研究所,维尔瑞夫; f 法国巴黎大学、索邦大学、INSERM U1138、法国巴黎大学研究所科德利埃研究中心、抗癌联盟标记团队; g 法国巴黎乔治蓬皮杜欧洲医院生物学系、AP-HP、巴黎 CARPEM 癌症研究所; h 比利时根特大学人体结构与修复系细胞死亡调查与治疗 (CDIT) 实验室; i 比利时根特大学根特癌症研究所; j 比利时鲁汶天主教鲁汶癌症研究所肿瘤学系肿瘤免疫学和免疫治疗实验室; k 荷兰马斯特里赫特马斯特里赫特大学医学中心 GROW 肿瘤和生殖学院放射肿瘤学系(MAASTRO); l 荷兰鹿特丹伊拉斯姆斯大学医学中心放射治疗系; m 比利时鲁汶大学医院神经外科; n 比利时鲁汶天主教大学神经科学系、实验神经外科和神经解剖学实验室; o 比利时鲁汶天主教鲁汶大学鲁汶脑研究所 (LBI); p 比利时鲁汶天主教大学慢性疾病和代谢系呼吸疾病和胸外科 (Breathe) 实验室; q 比利时安特卫普大学肿瘤学研究中心 (CORE)、综合个性化和精准肿瘤学网络 (IPPON); r 比利时安特卫普大学医院细胞治疗和再生医学中心; s 比利时鲁汶天主教大学肿瘤学系分子消化肿瘤学; t 比利时根特 VIB-Ugent 炎症研究中心 (IRC) 细胞死亡和炎症部门; u 比利时根特大学生物医学分子生物学系分子信号和细胞死亡研究中心; v 欧洲肿瘤免疫学学会、古斯塔夫·鲁西癌症中心、法国维尔瑞夫 INSERM 肿瘤免疫学和癌症免疫治疗
为民用遥控飞机系统的使用奠定新的基础 M. Balsi 1,*, S. Prem 2 , K. Williame 3 , D. Teboul 4 , L.Délétraz 5 , P.I. Hebrard Capdeville 6 1 DIET,罗马大学,意大利 - marco.balsi@uniroma1.it 2 Viasat,洛桑,瑞士 - sam.prem@viasat.com 3 Unifly,安特卫普,比利时 - koen.williame@unifly.aero 4 Connectiv-IT,巴黎,法国 - dteboul@connectiv-it.com 5 Skyguide,日内瓦,瑞士 - laurent-deletraz@skyguide.ch 6 M3 Systems,图卢兹,法国 - inti.hebrard@m3systems.eu 关键词:无人机、BVLOS、卫星通信、U-space、UTM、基础设施调查、走廊测绘 摘要:Skyopener 是欧盟通过欧洲 GNSS 机构 (GSA) 在“地平线 2020”计划框架内资助的一个项目。 Skyopener 的目标是通过提供和测试支持技术,特别是参考欧洲倡议 U-Space,为将民用遥控飞机系统 (RPAS) 整合到非隔离空域的路线图做出贡献,旨在建立将无人机整合到共享空域的法规和基础设施。该项目的主要成果包括:实施和测试基于卫星和 3G/4G 网络的可靠、安全的冗余空地通信链路;将任务管理系统和地面站与 UTM(无人机系统交通管理)客户端集成,并试验正在开发的 UTM 服务
1 托莱多大学医院放射肿瘤科,45007 托莱多,西班牙 2 拉蒙与卡哈尔大学医院放射肿瘤科,28034 马德里,西班牙 3 克鲁塞斯大学医院放射肿瘤科,48903 巴拉卡尔多,西班牙 4 瓦伦西亚大学总医院 ASCIRES 放射肿瘤科,46014 瓦伦西亚,西班牙 5 瓦勒德赫布伦医院放射肿瘤科,08035 巴塞罗那,西班牙 6 圣母维多利亚大学医院放射肿瘤科,29010 马拉加,西班牙 7 皇家马斯登医院及癌症研究所放射肿瘤科,SM2 5PT 萨顿,英国 8 根特大学医院放射肿瘤科,9000比利时根特 9 贝尔戈尼研究所放射肿瘤科,33000 Bordeaux, France 10 铱星网络放射肿瘤科,2610 安特卫普,比利时 11 凯龙萨鲁大学医院放射肿瘤科,拉鲁兹医院,马德里欧洲大学,28223 西班牙 *通讯地址: flcampos@salud.madrid.org(费尔南多·洛佩斯-坎波斯)
抽象有效检测油泄漏对于最大程度地减少环境破坏至关重要。这项研究介绍了一种利用深度学习的新颖方法,特别是Yolov8体系结构,并增强了用于漏油检测的先进计算机视觉技术。通过细致的数据集策划和模型训练,Yolov8模型的总体准确性(R-评分)为0.531,平均平均精度(MAP)为0.549。的性能在不同的溢出类型上有所不同,该模型在区分漏油和自然特征方面表现出明显的准确性,分别达到了高达0.75和0.68的精度和召回率,以进行光泽检测。可视化(例如盒子丢失,班级损失和混乱矩阵)提供了对模型性能动态的见解,揭示了损失的稳定下降和对时期准确性的提高。在此数据集中,测量值是由安特卫普·布鲁日(Antwerp Bruges)港口执行的无人机测量。此外,实用的应用显示了该模型在检测图像和视频数据中各种漏油类型方面的多功能性,从而确认其在环境监测和灾难响应方案中实际部署的潜力。这项研究代表着朝着更有效的漏油事件检测的重大迈进,这有助于环境可持续性和弹性工作。