临床上,多药耐药(MDR)从根本上影响着肿瘤治疗的预后,这主要是由于膜上通道介导的药物效应增强,从而减少了药物在肿瘤细胞中的积累。如何恢复肿瘤细胞对化疗的敏感性是一个持续而紧迫的临床问题。一种普遍的观点是,肿瘤细胞由于缺氧而转向糖酵解来提供能量。然而,研究表明,线粒体也起着至关重要的作用,例如通过三羧酸(TCA)循环为生物合成提供中间体,并通过氧化磷酸化(OXPHOS)完全分解有机物为细胞提供大量的ATP。在一些肿瘤中发现了高OXPHOS,特别是在癌症干细胞(CSC)中,它们的线粒体质量增加,可能依赖OXPHOS来提供能量。因此,它们对线粒体代谢抑制剂很敏感。鉴于此,我们在开发药物以克服 MDR 时应考虑线粒体代谢,其中线粒体 RNA 聚合酶 (POLRMT) 将成为重点,因为它负责线粒体基因表达。抑制 POLRMT 可以从源头上破坏线粒体代谢,造成能量危机并最终消灭肿瘤细胞。此外,它可能会恢复 MDR 细胞对糖酵解的能量供应,并使其重新对常规化疗敏感。此外,我们讨论了通过靶向 POLRMT 为 MDR 癌症设计新治疗分子的原理和策略。
在微电子领域,设备集成度更高、散热性能更好一直是个趋势。在制造基于陶瓷的微电子器件时,可以应用以下技术。厚膜混合技术使用烧结陶瓷基板(主要是 Al 2 O 3 ),用功能糊料进行丝网印刷,然后在 850°C 下烧制。氧化铝基板具有非常好的导热性(25 W/mK),但是只有两侧可以进行金属化。使用 LTCC 技术的多层系统可以实现更好的小型化。LTCC 器件通过丝网印刷、堆叠和层压陶瓷绿带,然后进行共烧来制造。LTCC 的缺点是由于其玻璃含量高而导致的低导热性(3 W/mK)。通过结合混合技术和 LTCC 技术,可以结合两种方法的优点,例如良好的导热性和高的多层集成度。由于通过热压将生带层压在烧结陶瓷基板上的故障率太高,因此冷低压层压 (CLPL) 已被用作替代层压工艺。CLPL 是一种层压方法,其中组件的连接是在室温下通过使用双面胶带施加非常低的压力 (<5 MPa) 进行的。在热处理过程中,粘合膜将胶带保持在一起,直到粘合剂完全分解;在进一步升温期间,胶带通过烧结连接在一起。本文介绍了将烧结材料与生带连接所使用的材料和加工步骤,并讨论了烧制过程中发生的影响。这些影响(如边缘卷曲和裂纹形成)主要是由于在受限烧结过程中发生的应力造成的。可以通过改变工艺参数来影响它们的控制。关键词:连接、层压、冷低压层压、LTCC、氧化铝基板
治疗大骨缺损仍然是没有完美解决方案的临床挑战,这主要是由于合适的骨植入物无法获得。添加性生产(AM)可吸收的多孔金属提供了无与伦比的机会,以实现对骨可能性植入物的挑战性要求。首先,可以定制这种植入物的多尺度几何形状,以模仿人骨的微体系结构和机械性能。相互联系的多孔结构还增加了表面积,以促进骨细胞的粘附和增殖。最后,它们的吸收特性是可以调节的,可以在整个骨骼愈合过程中维持植入物的结构完整性,从而确保在需要时确保舒适的负载,并在完成工作后完全分解。这种特性的组合为完整的骨再生和重塑铺平了道路。在开发理想的多孔可吸收金属植入物时,彻底表征生物降解行为,机械性能和骨再生能力很重要。我们回顾了由选择性激光熔化(SLM)生产的可吸收多孔金属的最新,重点是几何设计,材料类型,加工和后处理。后一个方面对吸收行为,由此产生的机械性能和细胞相容性的影响也将被讨论。与其坚固的惰性对应物相比,AM可吸收多孔金属(APM)显示出许多独特的特性,并具有巨大的潜力,以进一步优化其应用特异性性能,这是由于其灵活的几何设计。我们进一步强调了为将来的骨科解决方案采用AM APM时面临的挑战。
骨肉瘤患者在初次诊断时即出现明显转移,其 5 年生存率不足 20%。TP-3 是一种鼠类 IgG2b 单克隆抗体,对骨肉瘤细胞表面膜抗原 p80 上的表位具有高亲和力。肿瘤相关抗原 p80 在骨肉瘤中过度表达,在正常组织中的表达非常低。我们提出了一种新型双阿尔法靶向溶液,该溶液包含来自同一衰变链的两种放射性核素,包括骨趋向性 224 Ra 和癌细胞表面趋向性 212 Pb-TCMC-TP-3,用于治疗成骨性骨癌、循环癌细胞和微转移。在这项体外研究中,研究了 212 Pb-TCMC-TP-3(单 α 溶液)和 224 Ra/212 Pb-TCMC-TP-3(双 α 溶液)在模拟骨肉瘤微转移性疾病的多细胞球体模型中的细胞毒性作用。直径为 253 ± 98 µ m 的 OHS 球体分别用 4.5、2.7 和 3.3 kBq/ml 的 212 Pb-TCMC-TP-3 处理 1、4 和 24 小时,在 3 周内崩解。212 Pb-TCMC-TP-3 诱导的球体倍增时间延迟了 7 倍,而非特异性 212 Pb-TCMC-利妥昔单抗的剂量则高出 28 倍。 224 Ra/ 212 Pb-TCMC-TP-3 分别在 5 kBq/ml 孵育 4 小时和 24 小时后,在 3 周和 2 周内完全分解了直径为 218–476 µ m 的球体。与未结合的 224 Ra/ 212 Pb 相比,用 1 kBq/ml 224 Ra/ 212 Pb-TCMC-TP-3 处理 24 小时可导致球体活力降低 11.4 倍。