随着使用计算和数据密集型方法探索多主元合金 (MPEA) 的努力不断增加,预测材料特性的实验实现和验证需要对这些合金进行高通量和组合合成。虽然增材制造 (AM) 已成为解决这些挑战和通过零件制造进行快速原型设计的主要途径,但开发和理解工艺-结构-性能相关性的广泛研究迫在眉睫。特别是,基于定向能量沉积 (DED) 的 MPEA AM 前景广阔,因为功能分级组件制造以及表面熔覆的成分变化可能无限。我们分析了 MPEA 的 DED 的最新努力、各种过渡和难熔元素的激光金属沉积过程中的微观结构演变,并评估了各种加工参数对材料相和性能的影响。我们的努力表明,开发用于工艺参数选择的稳健预测方法和修改合成机制对于使 DED 平台能够重复生产无缺陷、稳定和设计 MPEA 至关重要。
抽象的二十四种新颖化合物携带四氢丙氨酸和N-丙泊酯部分的抗抗胆碱酯酶和抗单酰胺氧化酶活性。Propargyltacrine 23 (IC 50 ¼ 21nM) was the most potent acetylcholinesterase (AChE) inhibitor, compound 20 (IC 50 ¼ 78nM) showed the best inhibitory human butyrylcholinesterase ( h BChE) profile, and ligand 21 afforded equipotent and significant values on both ChEs (human AChE [ h AChE]: IC 50 ¼ 0.095±0.001 M m; H BCHE:IC50¼0¼093±0.003 m m)。关于MAO抑制作用,化合物7、15和25证明了对H MAO-B(分别为50¼163、40和170nm)的最高抑制潜力。总共将表现出最平衡的药理学特征的7、15、20、21、23和25化合物提交了渗透性和细胞活力测试。7-苯氧-n-(Prop-2-Yn-1-基)-1,2,3,4-四氢酸蛋白-9-盐酸盐盐酸盐(15)已被鉴定为可渗透药物,显示出平衡的药理特征[IC 50(HACHE)¼1.472¼1.472¼1.472¼1.472±0.024 m m m m m m; IC 50(H BCHE)¼0.659±0.077 m m; IC 50(H MAO-B)¼40.39±5.98nm],因此,作为一种新的命中配体,值得进一步研究,特别是在体内分析中,因为此处报道的初步细胞活力测试结果表明,这是一种相对安全的治疗剂。
摘要:能够选择性地功能化强脂肪族 C-H 键的反应开辟了新的合成途径,可以快速增加分子复杂性并扩大化学空间。特别有价值的是可以通过催化剂控制将位点选择性导向特定 C-H 键的反应。本文我们描述了羧酸底物中未活化一级 C-H 键的催化位点和立体选择性 γ-内酯化。该系统依赖于手性 Mn 催化剂,该催化剂通过羧酸盐与金属中心结合,活化过氧化氢水溶液以在温和条件下促进分子内内酯化。该系统表现出高位点选择性,即使在 α- 和 β- 碳上存在本质上较弱且先验更具反应性的二级和三级键的情况下,也能氧化未活化的一级 γ-C-H 键。对于带有非等效 γ-C-H 键的底物,已经揭示了控制位点选择性的因素。最值得注意的是,通过操纵催化剂的绝对手性,可以以前所未有的非对映选择性实现刚性环状和双环羧酸的双二甲基结构单元中甲基基团的 γ -内酯化。这种控制已成功应用于樟脑酸、樟脑酸、酮庚酸和异酮庚酸等天然产物的后期内酯化。DFT 分析指出,反弹型机理是由分子内 1,7-HAT 从结合底物的一级 γ -C − H 键到高反应性的 Mn IV -氧自由基中间体引发的,从而传递碳自由基,该碳自由基通过羧酸盐转移迅速内酯化。分子内动力学氘同位素效应和 18 O 标记实验为这种机理图景提供了强有力的支持。■ 简介
节省时间和更快的综合企业可用性,这尤其是当今对快速市场推出的需求。与带有粉末床的添加过程不同,例如激光粉末床融合,可用于生产高度构图的几何形状,基于粉末喷嘴的基于粉末喷嘴的进程,例如激光定向能量沉积(DED-L),也称为激光金属沉积(LMD),可构成组合模型和构建率和构建率和高构建率和乘积和乘积和乘积和乘积。Ti - 6AL - 4V等钛合金在工业应用中广泛使用。由于其出色的机械函数,低密度以及出色的耐腐蚀性和生物相容性,因此它们在医疗和牙科应用中或飞机扇区中的金属组件中使用,例如在高温下在涡轮机工作中的压缩机叶片中应用。[2 - 4]取决于制造过程的条件以及最终的后热机械治疗的特征,Ti - 6AL - 4V可以具有不同的微结构特征,这显着影响其性质。[2]两个阶段α和β的先验β晶粒的形态和排列是这些特征的例子。deD-l分量的微结构主要是通过具有柱状形状的先验β晶粒来表征的。[4,5]常规钛合金中的两个极端排列的极端情况是层状微结构和e词微结构。两种类型的微观结构都可以具有两个阶段的细节和粗整体。[2,6]相位的大小(纤维或粗糙)及其排列(层层或等词)会影响机械性能。这些依赖性已被广泛研究,例如,关于强度,螺旋,蠕变和疲劳行为的已知。
摘要:本研究提出了一种混合方法,以生成用于未来的机器学习应用程序的样本数据,用于使用GMAW工艺预测定向能量沉积 - ARC(DED-ARC)中的机械性能。DED-ARC是一个增材制造过程,由于其高沉积速率高达8 kg/h,它提供了一种具有成本效益的生成3D金属零件的方式。由填充材料G4SI1(ER70 S-6)制成的添加性生产的壁结构以T 8/5冷却时间的依赖性显示。数值模拟用于将过程参数和几何特征与特定T 8/5冷却时间联系起来。具有平均焊接功率,焊接速度和几何特征(例如壁厚,层高度和热源尺寸)的输入,可以在模拟焊接过程中计算每种迭代的特定温度场。这种新颖的方法允许通过结合实验结果来生成基于实验测量的T 8/5冷却时间来生成回归方程,从而生成大型的人工数据集作为机器学习方法的训练数据。因此,使用回归方程与数值计算的t 8/5冷却时间结合使用,在这项研究中可以准确预测机械性能,仅误差仅为2.6%。因此,一小部分实验生成的数据集允许实现回归方程,从而可以精确地预测机械性能。此外,经过验证的数值焊接模拟模型适合于实现T 8/5冷却时间的准确计算,误差仅为0.3%。
催化烯烃功能化是一种从易于获取的化学原料构建分子复杂性的有效而经济的方法。[1] 过渡金属催化的烯烃氢芳基化/烯基化反应是一种构建 C(sp 3 )−C(sp 2 ) 键的直接方法。已经开发出各种策略来控制使用共轭和非共轭烯烃的区域选择性,其中非共轭烯烃因烷基金属链行走而引入了额外的复杂性。[2-7] 在过去的几年中,使用非共轭烯烃的反马尔可夫尼科夫氢芳基化方法发展迅速。[8-12] 在这些系统中,选择性控制通常源于对形成主要烷基金属中间体的热力学偏好。另一方面,使用非共轭烯烃的马尔可夫尼科夫选择性氢芳基化反应相对较少,该领域的研究进展较慢(方案 1A)。 [13] 2016 年,Shenvi 和同事报告了一项显著进展,他们开发了一种双催化钴/镍金属氢化物氢原子转移 (MHAT) 方法,该方法可有效用于末端烯烃与芳基卤化物的氢芳基化,其中区域选择性由通过 MHAT 有利地形成二级烷基自由基来控制。[13c]
执行总结北卡罗来纳州的所有工业猪运营(包括生产沼气的工业)必须安装清洁技术,以防止对附近社区以及我们的河流,溪流和空气的伤害。20多年前,在北卡罗来纳州东部的洪泛区发生了一系列毁灭性的猪泻湖之后,史密斯菲尔德食品(Smithfield Foods)承诺放弃有害泻湖和Sprayfield系统,并开发和实施更清洁的,更可持续的技术来管理工业猪业务的废物。在开发了几种新的,改进的技术之后,该公司(这是世界上最大的猪肉生产商)所列出的,它无法在其任何运营中安装它们。现在,史密斯菲尔德(Smithfield)现在通过安装定向的沼气技术来赚取可观的利润,并再次为社区和环境负担,以减少公共卫生和增加污染的成本。这不是朝着环境可持续性迈出的一步,而只是该公司进一步巩固其过时的,原始的废物管理系统,这些系统被证明会损害北卡罗来纳州。Smithfield Foods和Dominion Energy于2018年11月成立了Align RNG,致力于投资有指导的沼气项目。定向的沼气项目涉及覆盖一个无衬里的猪废物泻湖,将封面下产生的甲烷捕获,通过新管道的迷宫运输气体,在中央公司拥有的中央,公司拥有的设施中处理,并将精制的天然气注入天然气管道中。我们反对对齐RNG提出的定向沼气项目,并呼吁结束猪废物管理的泻湖和喷雾系统。该系统(就像依赖于其的Align RNG项目一样)会损害有色人种的社区。泻湖和喷雾系统污染了我们的河流,溪流和我们呼吸的空气,污染地下水,威胁饮用水,产生有害气味,造成有害的空气污染并威胁邻居的健康。对齐RNG的指示沼气项目将加剧许多危害。沼气项目增加了水污染的威胁。覆盖废物泻湖会增加液体废物中氨的浓度,这些氨仍将喷洒到农田上,并且经常流入我们的地表水或渗入地下水中。它还增加了无衬里泻湖的向下压力。指示的沼气项目甚至更糟,因为消化,运输和存储期间的甲烷泄漏可能会减轻任何假定的气候利益,同时建造管道可能会破坏湿地,从而为防止洪水提供重要的保护。
摘要:本研究调查了原料丝(此处称为热丝)的电阻预热对双相不锈钢激光定向能量沉积稳定性的影响。沉积过程中在线获取的数据以及金相研究揭示了工艺特性及其稳定性窗口。在线数据(例如预热电路中的电信号和从工艺交互区侧视捕获的图像)提供了有关熔融丝和熔池之间金属转移的见解。结果表明,工艺特性(如激光丝和丝熔池相互作用)随丝预热水平而变化。此外,应用两个独立的能源(激光束和电能)可以微调热输入并增加穿透深度,而对焊珠的高度和宽度影响很小。这可以提高工艺稳定性并消除未熔合缺陷。在热丝电路中测量的电信号指示工艺稳定性,因此电阻预热可用于工艺监控。结论是电阻预热为控制激光导向能量沉积的稳定性和热输入提供了额外的手段。
基于参考文献:•Gradl,P。,Brandsmeier,W.,Calvert,M。等,“添加剂制造概述:推进应用程序,设计和经验教训。 演示,” M17-6434。 12月1日(2017年)。 •ASTM委员会F42关于添加剂制造技术。 添加剂制造技术的标准术语ASTM标准:F2792-12A。 (2012)。 •Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。 液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。 在2018年联合推进会议上(第4625页)。 •Ek,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。基于参考文献:•Gradl,P。,Brandsmeier,W.,Calvert,M。等,“添加剂制造概述:推进应用程序,设计和经验教训。演示,” M17-6434。12月1日(2017年)。•ASTM委员会F42关于添加剂制造技术。添加剂制造技术的标准术语ASTM标准:F2792-12A。(2012)。•Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。在2018年联合推进会议上(第4625页)。•Ek,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。