2.3。益处衡量方法确定计划是否正在实现方案益处,所需的输出和结果需要转换为可测量的方案益处指标。收益将需要归类为“定量”或“定性”(表2-2)。定量益处是可以在连续规模上以特定数值来衡量的益处,无论是绝对或百分比术语,而定性福利以基于类别的或描述性术语来衡量。相关的影响可能更难直接归因于该计划,并且更有可能涉及更广泛的性能或监测机制(超出方案级别),以促进围绕该计划对支持这些影响的计划的贡献进行定性评估。使用焦点组(方案交付前后)可以是一种尝试捕获该方案对此类影响的影响的方法。
住房收入账户 (HRA) 业务计划是理事会的支出和借贷策略,用于维持其存量、为租户和承租人提供服务以及设计和建造新的理事会住房。与任何其他业务计划一样,它必须表明我们有明确的目标实现方案,并且这些方案在短期、中期和长期内都是财务可行的。拥有一份由全体理事会批准的、基于合理假设和基本财务模型的 HRA 业务计划,是良好治理和健全财务管理的基础。它表明我们正在有效地花费租户的租金和服务费,实现物有所值,并管理债务和储备金以维持总体可行的 HRA。该战略提供了一个框架,在此框架下可以实现 (HRA) 业务计划 2024-2053 中详述的投资。
个人对自己的自我的钦佩被定义为自恋。自恋的概念与临床观察中不同态度的存在更加重要,但临床观察的存在导致了脆弱的自恋概念的文献。在这项研究中,讨论了具有脆弱自恋的严重抑郁症。严重抑郁症是一种显着影响个体功能的疾病,如果不治疗,可能会导致个人自杀。严重的抑郁症和脆弱的自恋在这种情况下同时出现,自杀故事也支持研究。在这种情况下,检查了个人的早期生活,并处理了计划治疗,以使现有疾病的起源和触发元素。模式治疗是一种整体方法,得到了有关终身人格障碍和慢性疾病的研究。在这项研究中,案件的案例表现,客户计划,模式和治疗课程的方案,用于实现方案治疗技术和治疗关系的目标。这些会议是在在线环境中进行的,并且在研究创伤时刻时遇到的心理治疗技术的局限性将详细讨论。人们认为,文献中在线治疗课程的工作将有助于该领域的理论的技术发展。
任何计算设备的物理实现,要想真正利用量子理论 [1] 提供的额外能力,都是极其困难的。原则上,我们应该能够在具有明确定义状态空间的系统上执行长相干量子操控(门控)、精确量子态合成以及检测。从一开始,人们就认识到,最大的障碍来自于任何现实量子系统不可避免的开放性。与外部(即非计算)自由度的耦合破坏了量子演化的幺正结构,而这正是量子计算 (QC) 的关键因素。这就是众所周知的退相干问题 [2]。通过量子纠错所追求的主动稳定可以部分克服这一困难,这无疑是理论 QC 的成功 [3]。然而,由于需要低退相干率,目前量子处理器的实验实现方案都是基于量子光学以及原子和分子系统 [1]。事实上,这些领域极其先进的技术已经可以实现简单量子计算机中所需的操作。然而,人们普遍认为,量子信息的未来应用(如果有的话)很难在这样的系统中实现,因为这些系统不允许大规模集成现有的微电子技术。相反,尽管“快速”退相干时间存在严重困难,但固态量子计算机实现似乎是从超快光电子学 [4] 以及纳米结构制造和表征 [5] 的最新进展中获益的唯一途径。为此,主要目标是设计具有“长”退相干时间(与典型的门控时间尺度相比)的量子结构和编码策略。第一个定义明确的基于半导体的量子通信方案 [6] 依赖于量子点 (QD) 中的自旋动力学;它利用了自旋自由度相对于电荷激发的低退相干性。然而,所提出的操纵
讲座1。定义等离子体是带电颗粒的准中性气体。最一般的情况:电子和带正电的离子。血浆可能包含中性原子。在这种情况下,等离子体被称为部分或未完全离子化。否则等离子体已完全离子化。“等离子体”一词是在1929年Langmuir和Tonks的工作中引入的,当时他们在充满电离气体的电子灯中研究了过程。现在,我们称此情况为低压气体。自然的例子是闪电。现代等离子体物理学在1950年代出现,当提出热核反应器的想法时。反过来,这项活动是由1952年和1953年在美国和美国开发的H炸弹发起的。然而,很快就认识到,融合能量在不可能的未来不太可能有用,而不是军事用途。Fusion Energy Works于1958年解密。为了对工作的热核反应,需要几个10 keV(1亿k)的温度。融合的进步在整个1960年代的大部分时间里都很缓慢,但是到那个十年末,经验开发的俄罗斯Tokamak配置开始产生等离子体,其参数远胜于过去二十年的乏味结果。到1970年代和80年代,许多具有逐步提高性能的托卡马克人已经建立了,在20世纪末,托卡马克斯几乎实现了融合分裂。强烈的事件功率导致颗粒表面消融,并在SO在21世纪初达成了国际协议,以建立国际热核实验反应堆(ITER),这是一个爆破的tokamak,旨在产生500兆瓦的融合输出能力。非tokamak的融合方法也以不同程度的成功进行了追求。许多涉及与Tokamaks相关的磁性实现方案。与基于磁性结构的融合方案相反,还开发了惯性辅助方案,在该方案中,高功率激光器或类似强烈的强力源轰炸了热核燃料的毫米直径颗粒,具有超短效的,具有强大的强烈浓缩的有指导能量的极有强大的脉冲。
量子计算和通信领域取得了突破性进展 [ 3 ],其灵感来源于 P. Shor [ 4 ] 提出的整数因式分解量子算法。20 世纪 90 年代初,量子逻辑运算实现方案的理论提出与物质与场相互作用领域的进展相结合,为量子信息论奠定了基础,使得该学科目前成为一个独立的、最为突出的研究领域。除了通过实验建立了量子信息处理的原理证明 [ 1 – 3 ] 之外,量子力学的基础 [ 1 , 2 , 5 ] 也受益于理论与实验的对话,这种对话涉及物质与场相互作用物理、核磁共振、冷原子和固体物理等多个领域。除了量子量子比特和算法所带来的计算增益之外,本研究的目标是在物质-场相互作用领域,研究通过加强迄今已实现的物质-场耦合来进一步增加这种增益的可能性。这种加强将导致物质和场之间激发交换的时间更短,从而导致量子信息处理的时间更短。为了实现它,我们转向 20 世纪 90 年代后期发生的另一项重大进展:PT 对称哈密顿量的量子力学 [ 6 , 7 ] 。与量子信息领域的情况类似,伪厄米量子力学目前是一个独立的研究领域,得益于强大的活动和有趣的结果 [ 8 ] 。我们注意到,实现比厄米量子力学更快的可能性早在参考文献 [ 9 ] 中就有所设想。接下来面临的挑战是量子最速降线问题:寻找一个哈密顿量,它能够在最短的时间间隔 τ 内控制从给定初态到给定终态的演化。作者得出结论,对于厄米哈密顿量,τ 有一个非零的下界,而对于伪厄米哈密顿量,它可以任意小。然而,与这一非凡结论相反的是,后来发现 [ 10 ],[ 9 ] 中提出的方法存在不一致性,这实际上阻碍了它实现比厄米更快的演化。我们在此提出的协议是一种通过伪厄米相互作用加强原子-场耦合来实现比厄米更快演化的替代方法。此外,加强原子-场耦合在量子光学中有着广泛的实际应用 [ 11 ]。