抽象的二维(2D)分层过渡金属的tellurides(Chalcogens)可以利用其表面原子的特征,以增强用于能量转换,存储和磁性应用的地形活动。每个纸的逐渐堆叠改变了表面原子的微妙特征,例如晶格膨胀,从而导致了几种现象和渲染可调的特性。在这里,我们评估了使用表面探针技术的2D Cote 2张2D COTE 2板和磁性行为的厚度依赖性力学特性(纳米级力学,摩擦学,潜在的表面分布,界面相互作用)。通过理论研究进一步支持并解释了实验观测:密度功能理论和分子动力学。理论研究中观察到的性质变化释放了COTE 2晶体平面的关键作用。所提出的结果有助于扩大在柔性电子,压电传感器,底机传感器和下一代内存设备中使用2D telluride家族的使用。
可见频谱中能够动态持续发光(PERS)的抽象材料在显示,生物传感和信息安全性的应用中受到了极大的追捧。然而,很少实现具有可检测和激发波长依赖性特征的SERL材料。在此,存在一个非杂色化合物CAGA X O 4:BI(x <2),显示超长的色彩可调式SERL。可以通过改变激发波长来调整持续的发射波长,从而使可见光谱内的绿色到橙色区域的动态色彩调制。理论计算与实验观测相结合,用于阐明各种缺陷状态的热力学电荷跃迁,从而提供了对BI 3 + Emitters,陷阱和多色PERS之间关系的见解。此外,还展示了可颜色可调的SERL材料和富裕设备的实用性,以在视觉感知看不见的紫外线光,多色显示,信息加密和反爆炸。这些发现创造了新的机会,可以为各种应用开发具有动态控制的SERL的智能光电材料。
用薄金属膜制成的超电流晶体管是下一代高性能计算平台的一个有前途的选择。尽管进行了广泛的研究,但对于外部直流电场如何抑制薄膜中的超导性仍未完全定量显微镜解释。这项研究旨在根据Eliashberg的理论提供对超构度作为膜厚度的函数的定量描述。计算考虑了电场的静电,其在膜中的逼真的穿透深度以及对库珀对的影响,根据BCS理论,该电场对库珀对的影响被描述为标准的S波结合状态。估计表明,需要大约10 8 V/m的外部电场才能抑制10-30 nm厚的膜中的超导性,这与实验观测一致。最终,当将外部电场应用于膜表面时,该研究提供了“通过设计材料”指南来抑制超电流。此外,提出的框架很容易扩展,以研究超薄膜的相同效果。
我们证明,在存在增强的绿色荧光蛋白(EGFP)表达腺体相关病毒(AAV8)载体的情况下,将电场脉冲在体外施加到肝细胞,使给定的传输水平与HISPATOCYCYP相比,将腺相关的病毒量(AAV8)降低了50-折叠式的电气量不超过50-折叠量。 接触。我们在标准井板中的8个暴露条件下进行了48个实验观测。电脉冲暴露涉及具有375 V/ cm场强度的单个80-MS脉冲。我们的研究表明,电脉冲暴露会导致细胞中EGFP的表达增强,这表明转导效率提高。如果成功地转换为体内环境,在我们的研究中观察到的增强转导将是一种有希望的迹象,证明了AAV载体所需剂量的潜在减少。对电场脉冲对体外AAV转导的影响是重要的前一步。
近二十年来,大量类粲偶态(称为XY Z 态)被实验观测到 [ 1 – 5 ]。对其结构提出了多种理论解释,如强夸克态 [ 6 , 7 ]、四夸克态 [ 8 , 9 ]、强子分子 [ 10 – 15 ]、运动学效应 [ 16 – 19 ] 以及不同组分的混合。由于大多数 XY Z 态出现在特定的强子阈值下,因此强子分子是众多奇异态中最有希望的解释之一,尽管仍存在许多争议。例如,隐粲态 X ( 3872 ) 非常接近 D¯D∗ 阈值 [ 20 , 21 ],Zcs ( 3985 ) 接近¯DsD∗/¯D∗sD阈值 [ 22 ]。最近,LHCb 合作组报道的 T + cc 态,其质量非常接近 D∗+D0 阈值 [ 23 , 24 ],可以解释为 D∗D 分子态 [ 25 – 30 ]。BESIII 合作组观测到的 Zc ( 4025 ) [ 31 , 32 ] 可以解释为 D∗¯D∗ 分子,
量子混沌是基础物理学的一个分支,研究量子力学、统计物理学和非线性动力学中的毛细管间场[1–8]。早在量子力学成立之前,1913年玻尔就提出了量化规则,并利用该规则成功地预言了氢原子的能谱,很好地解释了实验观测得到的巴尔末公式。1917年,爱因斯坦将玻尔的量化规则扩展至相空间中具有全局环面结构的可积系统[9]。随后他注意到这些量化规则仅适用于可积系统,对更一般的不可积系统则不适用[9,10]。约半个世纪后,在 20 世纪 70 年代,受到非线性动力学和混沌研究的启发,如何将半经典量化规则推广到不可积系统的问题再次引起学界的关注,并发展了 Gutzwiller 的迹公式,指出尽管测度为零,但不稳定周期轨道在塑造量子谱涨落行为方面起着至关重要的作用 [5, 11 – 23]。量子系统,如量子
摘要 中微子振荡是基本粒子物理中的一个重要物理现象,它的非经典特性可以用Leggett–Garg不等式来揭示,表明它的量子相干性可以在天体物理长度尺度上维持。在本文中,我们通过量子相干性的非局域优势(NAQC)、量子导引和Bell非局域性来研究实验观测到的中微子振荡的量子性度量。从不同的中微子源,分析了不同能量的反应堆和加速器中微子集合,例如大亚湾(0.5 km和1.6 km)和MINOS(735 km)合作。与理论预测相比,用实验表征了两味中微子振荡的NAQC。它随着能量的增加表现出非单调的演化现象。此外,研究发现,NAQC 的量子关联性比量子操纵和贝尔非局域性更强,甚至达到公里量级。因此,对于实现 NAQC 的任意二分中微子味态,它也必须是一个可操纵的贝尔非局域态。该结果可能为中微子振荡在量子信息处理中的进一步应用提供新的见解。
报道了在非二元分级多模具纤维中从可见的到中红外(700–2800 nm)产生的两幅度超脑(700–2800 nm)。纤维设计基于纳米结构的核心,该核心由两种类型的铅孔 - 孔 - 玻璃棒,具有不同的折射率。与二氧化硅纤维相比,这种结构产生了有效的抛物线指数,扩展的传输窗口和十倍非线性。使用正常和异常分散体的波长在波长下进行脉搏泵,对定期自我成像播种的超核生成机制和不稳定性进行了详细的研究。显着地,发现高功率状态下合适的注射条件会导致输出光束发射显示出从非线性模式混合中自我清洁的明确签名。实验观测是使用广义非线性schrödinger方程的时空3+1d Nu-Merical模拟来解释的,并且模拟光谱与完整的两座光谱带宽的实验非常吻合。这些结果证明了一种新的途径,可以在中红外产生明亮的超人物光源。
摘要 中微子振荡是基本粒子物理中的一个重要物理现象,它的非经典特性可以用Leggett–Garg不等式来揭示,表明它的量子相干性可以在天体物理长度尺度上维持。在本文中,我们通过量子相干性的非局域优势(NAQC)、量子导引和Bell非局域性来研究实验观测到的中微子振荡的量子性度量。从不同的中微子源,分析了不同能量的反应堆和加速器中微子集合,例如大亚湾(0.5 km和1.6 km)和MINOS(735 km)合作。与理论预测相比,用实验表征了两味中微子振荡的NAQC。它随着能量的增加表现出非单调的演化现象。此外,研究发现,NAQC 的量子关联性比量子操纵和贝尔非局域性更强,甚至达到公里量级。因此,对于实现 NAQC 的任意二分中微子味态,它也必须是一个可操纵的贝尔非局域态。该结果可能为中微子振荡在量子信息处理中的进一步应用提供新的见解。
在能量材料的震动到淘汰过渡期间,分子间和分子内振动的耦合在启动化学中起着至关重要的作用。在本文中,我们使用宽带,超级空军红外瞬时吸收光谱光谱光谱镜头报告了固体能量材料1,3,5-三硝基羟基1,3,5-三嗪(RDX)的固体能量材料的次秒至亚纳秒振动能量转移(VET)动力学。实验表明,在三个不同的时间尺度上发生兽医:次秒,5 ps和200 ps。在中红外的所有探测模式下,信号的超快出现表明固体中所有振动的强烈无谐耦合,而长期寿命的演化表明兽医是不完整的,因此即使在百比次时时间表上也无法达到热平衡。密度功能理论和经典分子动力学模拟为实验观测提供了有价值的见解,揭示了高频振动的初始VET动力学的压缩 - 不敏感的时间尺度,以及在压缩下对低频声子模式的急剧扩展的放松时间。最长动力学的模式选择性表明N – N和轴向No 2拉伸模式与长寿,激发的声子浴的耦合。