结果与讨论。......................。。。。。。。。。。。。。。。。。。。。。。。。..14 纵向导数 ...................。。。。。。。。。。。。。。。。。。。。。。。。....16 基线配置 ..................。。。。。。。。。。。。。。。。。。。。。。。。.16 线性 Aerospike SR-71 实验配置 .....................18 测试台配置。..........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 配置比较。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 横向导数。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 基线配置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 线性 Aerospike SR-71 实验配置。。。。。。。。。。。。。。........22 测试台配置。.............。。。。。。。。。。。。。。。。。。。。。。。。.....23 配置比较 .................。。。。。。。。。。。。。。。。。。。。。。24
通过促进荧光配体或其他探针的共价钩,Halotag允许实时成像,并为研究活细胞中的核转运机制提供了强大的工具。该特定的克隆(数字252)是为其稳定表达的NUP96的稳定表达而选择的,该表达可确保实验配置中的持续性能。此功能使其非常适合高分辨率成像技术和分子相互作用研究,从而支持细胞生物学的先进研究,特别是在核功能和遗传调节的背景下。
摘要:光的自旋霍尔效应是一种通过光接口处的横向和旋转依赖性分裂形成的现象,对于从界面和依据的精确定量数据而言是一种吸引人的选择,是提高精度元学的一种吸引人的选择。这种高度的精度归因于弱测量的原理。自从其概念引入以来,通过弱测量技术从经验上观察到了光的旋转效果,并紧密地遵循了最初提出的实验配置。最近,有人建议将设置缩小尺寸,而精确度损害了。在这里,通过观察反映和
描述:该项目将在区域海洋建模和数据同化中开发出可重现性和软件正确性的新功能。我们对开发工作流程非常感兴趣,该工作流程结合了用于测试和共享实验配置的软件工程最佳实践,以推动开放科学的区域海洋和气候建模。具体来说,现任者将协助单位和基于物业的测试的规范和实施。他们还将有助于开发自动化和一致的测试过程,以确保通过连续集成管道对新代码进行彻底验证。现任者将与NSF NCAR的计算系统和信息系统实验室以及气候和全球动态实验室中的鳄鱼团队成员紧密合作,并有机会了解地球系统和海洋建模,软件工程和高性能计算。将使用NSF NCAR的HPE Cray Ex Cluster Derecho进行工作,该群集是19.87-Petaflops系统。
本文从理论和实验两个方面研究了 C 4 + 与氢原子碰撞的电荷转移过程。我们的理论研究基于电子-核动力学方法,该方法用于研究态间和总电子捕获截面的贡献。我们的理论结果与 C 4 + 与氢原子碰撞的绝对总截面的实验测量结果相辅相成,该测量采用离子原子合并束技术,在橡树岭国家实验室的改进设备中以相对碰撞能量 0.122–2.756 keV/u 进行。我们发现,在实验结果中,在碰撞能量为 0.5 keV/u 附近观察到的结构是由于 3 ℓ 捕获截面、电子和核动力学的耦合以及实验配置中的接受角的综合贡献。我们还报告了 C 4 + 的动能损失和停止截面。我们发现,C 4 + 在相对碰撞能量介于 0.1 至 10 keV / u 之间时会获得能量,最大值为 ∼ 1 keV / u。我们的理论研究表明,要与合并光束实验结果进行比较,必须考虑合并路径长度对仪器的影响。
图S1:用于测量来自半导体晶体HHG的单光束二阶强度相关的强度相关测量设置的实验配置。超短脉冲通过半波板和偏振器(P),并在半导体样品上以镜头(F 1)聚焦,达到了与焦点处的材料内部原子场强度相当的电场强度。生成的辐射通过光圈(a)在空间上滤波,并沿主排放极化(P)轴选择。剩余的红外泵光子被过滤。使用镜头(F 2)将选定的HHG辐射朝向检测器臂进行编织。之后,H3和H5用两个二分性镜(DM 1和DM 2)在空间上分离。进一步的光谱过滤是通过窄带过滤器在HBT类似设置之前完成的,以将光子到达时间关联。最后,两个类似的镜头(F 3)将辐射聚焦于Spad芯片上。Spads以Geiger模式进行操作,并用作由数字转换器介导的开始停机测量的输入。
众所周知,地面宇宙辐射 (TCR) 会导致硅和碳化硅功率器件中发生电离事件,从而导致灾难性的后果 [1]。因此,功率器件的设计和可靠运行需要准确表征电荷沉积和收集过程。目前,量化功率器件对 TCR 的敏感性最常见、最快速的技术是基于粒子加速器中的高能粒子辐照 [2]。由于这些测试是在高加速条件下进行的,因此转换到真实的 TCR 环境并不总是很简单。在本文中,我们提出了一种实验装置,用于监测半导体功率器件中由电离辐射产生的非破坏性单电离事件的发生,以收集有关电荷产生和收集过程的精确统计数据。谱测量系统的设计方式使其可以部署在大量实验配置中,其中收集的电荷、计数率和 DUT 的额定电压可能会有很大变化。具体来说,光谱仪需要记录器件中产生的每个电离事件,这些事件的电荷脉冲范围从 1 fC 到 2 pC,以及其时间戳和波形。该系统需要处理高压器件(额定电压高达 3.5 kV),尽量减少偏置纹波和电压随时间漂移。为了提高收集数据的统计意义,需要并行测试器件。因此,系统必须对大输入电容(高达 2 nF)保持稳定,并为大输入电容提供准确的结果
近年来,深度生成模型对工程和科学产生了深远的影响,彻底改变了图像和音频生成等领域,并提高了我们建模科学数据的能力。特别是,去噪扩散概率模型 (DDPM) 已被证明可以准确地将时间序列建模为复杂的高维概率分布。实验和临床神经科学也将受益于这一进步,因为准确建模神经生理时间序列,例如脑电图 (EEG)、皮层电图 (ECoG) 和局部场电位 (LFP) 记录及其合成生成可以实现或改进各种神经科学应用。在这里,我们提出了一种使用 DDPM 建模多通道和密集采样的神经生理记录的方法,该方法可以灵活地应用于不同的记录模式和实验配置。首先,我们表明 DDPM 可以为各种数据集 11 生成逼真的合成数据,包括不同的记录技术(LFP、ECoG、EEG)和物种(大鼠、猕猴、人类)。DDPM 生成的时间序列准确捕获单通道和多通道统计数据,例如频谱和 13 相位幅度耦合,以及细粒度和数据集特定特征,例如尖锐的波纹。14 此外,可以根据实验条件或大脑状态等其他信息生成合成时间序列。我们展示了 DDPM 在几种神经科学特定分析中的实用性和灵活性,例如大脑状态分类和缺失通道的归纳以改进神经解码。总之,DDPM 可以作为神经生理记录的精确生成模型,并且在概率生成合成时间序列以用于神经科学应用方面具有广泛的实用性。20
人工智能(AI)是物理和科学的潜在破坏性工具。一个至关重要的问题是,该技术如何在概念上做出贡献,以帮助获得新的科学理解。科学家已经使用AI技术重新发现了以前已知的概念。到目前为止,尚无报告的例子,这些例子适用于开放问题,以获取新的科学概念和思想。在这里,我们提出了可以提供新概念概念的算法,我们在实验量子光学的领域中演示了其应用。这样做,我们做出了四个至关重要的贡献。(i)我们引入了一个基于图的量子光学实验表示,可以通过算法解释和使用。(ii)我们为新的量子实验开发了一种自动设计方法,该方法比混凝土设计任务上的最佳先前算法快的阶数,用于实验配置。(iii)我们在实验量子光学器件中解决了一些关键的开放问题,这些问题涉及光子量子技术和量子状态和量子状态中资源状态的实用蓝图以及允许进行新的基础量子实验的转换。最后,最重要的是,(iv)可解释的表示和巨大的加快使我们能够生成人类科学家可以完全解释和从完全获得新的科学概念的解决方案。我们预计,Theseus将成为开发新实验和光子硬件的量子光学器件的重要工具。它可以进一步概括以回答空旷的问题并在量子光学实验以外的许多其他量子物理问题中提供新概念。theseus是物理学中可解释的AI(XAI)的演示,该物理学表明AI算法如何在概念层面上为科学做出贡献。