本文介绍了自适应控制方法在将自主固定翼飞机回收到航空母舰上的应用。所用的控制结构是模型参考自适应控制,在俯仰、滚转、偏航和空速轴上实施,以提供飞机的 6 个自由度控制。控制系统是为 NAVAIR ExJet 飞机模型开发的。控制器的结构包括一阶线性模型跟随器和自适应批评控制器。自适应用于增强自适应批评控制器产生的命令信号,使用以下方法:自适应偏差校正器、最佳控制修改和局部线性模型补偿。基于状态空间模型的逆控制器生成控制效应器命令。控制系统参考输入是旋转速率和空速,提供外环控制器来引导飞机到达着陆点。控制系统设计是通过使用基于标称误差、时间延迟裕度和着陆精度的指标来实现的。在标称、效应器故障和控制系统建模错误条件下评估控制系统。定义的控制系统能够在标称、故障和建模错误条件下提供所需的控制。
量子计算有望在某些问题上提供比传统计算更快的速度。然而,发挥其全部潜力的最大障碍是这些系统固有的噪声。这一挑战被广泛接受的解决方案是实现容错量子电路,而这超出了当前处理器的能力。我们在此报告了在嘈杂的 127 量子比特处理器上进行的实验,并展示了在超越蛮力传统计算的规模上对电路体积的准确期望值的测量。我们认为这代表了量子计算在容错时代之前的实用性的证据。这些实验结果得益于超导处理器在这种规模上的相干性和校准方面的进步,以及表征 1 和可控制地操纵如此大型设备上的噪声的能力。我们通过将测量的期望值与精确可验证电路的输出进行比较来确定其准确性。在强纠缠状态下,量子计算机提供了正确的结果,而基于纯态的一维(矩阵积态,MPS)和二维(等距张量网络态,isoTNS)张量网络方法 2,3 等领先的经典近似方法则无法实现。这些实验展示了实现近期量子应用的基础工具 4,5 。
光子学是构建室温下运行的模块化、易于联网的量子计算机的首选平台。然而,到目前为止,还没有提出具体的架构来同时利用编码成光态的量子比特和生成它们的现代工具的优势。在这里,我们提出了一种可扩展容错光子量子计算机的设计,该设计基于理论和技术的最新发展。我们架构的核心是生成和操纵由玻色子量子比特和压缩真空态组成的三维资源状态。该提案利用最先进的程序进行非确定性玻色子量子比特的生成,并结合连续变量量子计算的优势,即使用易于生成的压缩态实现克利福德门。此外,该架构基于二维集成光子芯片,用于在一个时间和两个空间维度上产生量子比特簇状态。通过减少与现有架构相比的实验挑战并实现室温量子计算,我们的设计为可扩展的制造和操作打开了大门,这可能使光子学在通往具有数百万量子比特的量子计算机的道路上超越其他平台。
umass.edu › ramanathan_clksync PDF 作者:P Ramanathan — 作者:P Ramanathan 最大可靠性和高性能……商用飞机的规定小于……通过使用数字签名²或。
需要容错设计来确保执行飞行关键功能的数字航空电子系统安全运行。本章讨论了容错设计的动机,以及为实现容错系统而发展起来的许多不同设计实践。设计人员需要确保完全定义容错要求,以便从可用的替代方案中选择要实现的设计概念。容错系统的要求包括性能、可靠性以及确保设计在实施时满足所有要求的方法。这些要求必须记录在系统预期行为的规范中,指定对系统各种输出施加的容差 [Anderson and Lee,1981]。设计的开发与保证方法的开发同时进行,以验证设计是否满足所有要求,包括容错。本章最后引用了这一发展领域的进一步阅读材料。容错系统在出现故障的情况下提供持续、安全的运行。容错航空电子系统是飞行关键架构的一个关键要素,其中包括容错计算系统(硬件、软件和定时)、传感器及其接口、执行器、元件以及分布式元件之间的数据通信。容错航空电子系统确保完整性
嵌入式系统的广泛部署对我们的社会产生了重大影响,因为它们在许多关键的实时应用中与我们的生活相互作用。通常,用于安全或任务关键型应用(例如航空航天、航空电子、汽车或核领域)的嵌入式系统在恶劣的环境中工作,在这些环境中,它们会频繁遭受瞬态故障,例如电源抖动、网络噪声和辐射。它们还容易受到设计和生产故障导致的错误的影响。因此,它们的设计目标是即使在发生错误的情况下也能保持及时性和功能正确性。容错对于实现可靠性起着至关重要的作用,而设计有效和高效的容错机制的基本要求是潜在故障及其表现的现实和适用模型。在这种情况下需要考虑的一个重要因素是故障和错误的随机性,如果在时序分析中通过假设严格的最坏情况发生场景来解决这些问题,可能会导致不准确的结果。同样重要的是,通过有效利用可用资源实现容错,解决嵌入式系统的功率、重量、空间和成本限制。本论文提出了一个框架,用于设计可预测的可靠嵌入式实时系统,同时解决及时性和可靠性问题。它提出了一系列容错策略,特别是针对嵌入式实时系统。通过考虑系统构建块的不同关键性级别,可以实现高效的资源利用。容错策略与所提出的概率可调度性分析技术相辅相成,这些技术基于全面的随机故障和错误模型。
估计公共报告信息收集负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将关于此负担估计或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至华盛顿总部服务处、信息运营和报告理事会,地址:1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息未显示当前有效的 OMB 控制编号,则任何人都不会因未遵守信息收集而受到处罚。
量子计算固有的高并行性和纠缠特性使得量子图像处理技术成为人们关注的焦点。图像处理中最广泛使用的技术之一是分割,其最基本的形式之一可以使用阈值算法来实现。本文提出了一种容错量子双阈值算法。该算法基于 Clifferd+T 门。由于 T 门增加了容错能力,但代价是成本比其他量子门高得多,因此我们的重点是减少 T 门的数量。这使得最先进的双阈值分割电路能够增加噪声容忍度、计算成本降低和容错能力。由于双阈值图像分割涉及比较操作,因此作为这项工作的一部分,我们实现了两个比较器电路。这些电路优化了 T 计数和 T 深度指标,使其与文献中目前可用的最佳电路比较器相比更胜一筹。
在过去的三十年中,使用量子计算机估算分子哈密顿量的基态能量的成本已显著降低。然而,人们很少关注估算其他可观测量相对于所述基态的期望值,而这对于许多工业应用来说非常重要。在这项工作中,我们提出了一种新颖的期望值估计 (EVE) 量子算法,该算法可用于估算任意可观测量相对于系统任何本征态的期望值。具体来说,我们考虑了两种 EVE 变体:基于标准量子相位估计的 std-EVE 和利用量子信号处理 (QSP) 技术的 QSP-EVE。我们对这两种变体都进行了严格的误差分析,并最小化了 QSP-EVE 的单个相位因子数量。这些误差分析使我们能够在各种分子系统和可观测量中为 std-EVE 和 QSP-EVE 生成常数因子量子资源估计。对于所考虑的系统,我们表明 QSP-EVE 可将 (Toffoli) 门数减少多达三个数量级,并将量子位宽度减少多达 25%,而标准 EVE 则可实现。虽然估计的资源数量对于第一代容错量子计算机来说仍然太高(对于所考虑的示例,大约在 10 14 到 10 19 个 Toffoli 门之间),但我们的估计对于期望值估计和现代 QSP 技术的应用而言都是同类中的首例。
当前用于对噪声量子处理器进行基准测试的方法通常测量平均错误率或过程保真度。然而,容错量子误差校正的阈值是以最坏情况错误率(通过钻石范数定义)表示的,这可能与平均错误率相差几个数量级。解决这种差异的一种方法是使用随机编译 (RC) 等技术对量子门的物理实现进行随机化。在这项工作中,我们使用门集断层扫描对一组双量子位逻辑门进行精确表征,以研究超导量子处理器上的 RC。我们发现,在 RC 下,门错误可以通过随机泡利噪声模型准确描述,而没有相干误差,并且空间相关的相干误差和非马尔可夫误差受到强烈抑制。我们进一步表明,对于随机编译的门,平均错误率和最坏情况错误率相等,并且测量到我们的门集的最大最坏情况误差为 0.0197(3)。我们的结果表明,当且仅当门是通过调整噪声的随机化方法实现的,随机化基准是验证量子处理器的错误率是否低于容错阈值以及限制近期算法的失败率的可行途径。