我们提出了一种设计方法来促进深度学习模型的容错。首先,我们实现了一个多核容错神经形态硬件设计,其中每个神经形态核心中的神经元和突触电路都包裹在星形胶质细胞电路中,星形胶质细胞是大脑的星形神经胶质细胞,它通过使用闭环逆行反馈信号恢复故障神经元的尖峰放电频率来促进自我修复。接下来,我们在深度学习模型中引入星形胶质细胞,以实现对硬件故障所需的容忍度。最后,我们使用系统软件将支持星形胶质细胞的模型划分为集群,并在所提出的容错神经形态设计上实现它们。我们使用七种深度学习推理模型评估了这种设计方法,并表明它既节省面积又节能。
我们研究了硬件规格如何影响最终运行时间和在容错机制下实现量子优势所需的物理量子比特数。在特定时间范围内,不同的量子硬件设计的代码周期时间和可实现的物理量子比特数可能会相差几个数量级。我们从对应于特定化学应用的量子优势的逻辑资源需求开始,模拟 FeMo-co 分子,并探索使用额外的量子比特可以在多大程度上缓解较慢的代码周期时间。我们表明,在某些情况下,只要有足够的物理量子比特,代码周期时间明显较慢的架构仍然能够达到理想的运行时间。我们利用了之前在纠错表面码领域考虑过的各种空间和时间优化策略。特别是,我们比较了两种不同的并行化方法:表面代码单元游戏和 AutoCCZ 工厂。最后,我们计算了在实际构成威胁的短时间内破解比特币网络中 256 位椭圆曲线密钥加密所需的物理量子比特数。使用表面代码、1 ls 的代码周期时间、10 ls 的反应时间和 10 3 的物理门错误,在一小时内破解加密需要 317 10 6 个物理量子比特。而要在一天内破解加密,则需要 13 10 6 个物理量子比特。
单向量子中继器通过量子纠错码抵消丢失和操作错误,可以确保量子网络中快速可靠的量子比特传输。至关重要的是,这种中继器的资源需求(例如,每个中继器节点的量子比特数和量子纠错操作的复杂性)必须保持在最低水平,以便在不久的将来实现。为此,我们提出了一种单向量子中继器,它使用代码连接以资源高效的方式针对通信信道中的丢失和操作错误率。具体来说,我们将树簇代码视为内部容错代码,与外部 5 量子比特代码连接,以防止泡利错误。采用基于标志的稳定器测量,我们表明,通过散布每个专门用于抑制丢失或操作错误的中继器节点,可以以最小的资源开销连接长达 10,000 公里的洲际距离。我们的工作证明了定制的纠错码如何显著降低长距离量子通信的实验要求。
实现误差修正的逻辑量子比特及其之间的操作是进行有用量子计算的关键。离子振动模式系统是实现逻辑量子比特的良好候选。利用受激拉曼跃迁实现集体振动声子模式之间的分束器相互作用,从而实现声子模式之间的量子纠缠是实现逻辑量子比特之间操作的重要步骤。这种对多模式和压缩态的纠缠操作可用于生成连续变量簇态。此外,通过制备玻色子码作为离子振动态并利用上述分束器相互作用,可以实现跨多模式的门操作。
静态冗余分配不适用于在可变和动态环境中运行的硬实时系统(例如雷达跟踪、航空电子设备)。自适应容错 (AFT) 可以在时间和资源约束下确保关键模块具有足够的可靠性,方法是将尽可能多的冗余分配给不太重要的模块,从而优雅地减少它们的资源需求。在本文中,我们提出了一种支持实时系统中自适应容错的机制。通过为动态到达的计算选择合适的冗余策略来实现自适应,以确保所需的可靠性并最大限度地发挥容错潜力,同时确保满足最后期限。使用模拟 AWACS 预警机中雷达跟踪软件的实际工作负载来评估所提出的方法。结果表明,在满足时间约束的任务方面,我们的技术优于静态容错策略。此外,我们表明,这种以时间为中心的性能指标的增益不会将执行任务的容错性降低到预定义的最低水平以下。总体而言,评估表明,所提出的想法产生了一个在容错维度上动态提供 QOS 保证的系统。
・每位学生阅读论坛中提交的意见,并在纸质工作表上写下五种令他们印象最深刻的意见。 ・让学生花足够的时间阅读朋友的意见并仔细阅读。 *特意关闭鼓掌功能,让学生在工作表上写下自己的意见,以便学生仔细阅读。 *卡片上的名字被隐藏,以便学生可以不带先入之见地阅读。 ・在工作表上写下自己的意见后,学生打开鼓掌功能并为自己选择的意见鼓掌。显示卡片上的名字,重新排列卡片以便鼓掌,然后将卡片分享给全班。学生在查看谁写了这些意见后发表自己的意见,例如说“我很惊讶那是XX先生的意见”,或“我和XX先生有同样的看法”。
1、CT特异性反应;2、无添加对照;3、10μg/ml CuCl2;4、20mM F-6-P和10μM CuCl2(pi
衰老与各种器官和组织的功能下降有关,并且对各种日常应力的反应不足会导致与年龄相关的疾病。因此,在老龄化的社会中,衰老是各种疾病和重要研究主题的危险因素。据报道,患有细胞衰老的细胞(衰老细胞)积聚在体内各种组织中,并可能导致生理衰老。此外,已经表明,在转基因小鼠中选择性消除表达P16的细胞可降低与衰老相关的疾病并延长寿命。鉴于这些实验结果,靶向体内的衰老细胞是预防和治疗与年龄相关的疾病的有吸引力的策略。在这篇综述中,我们将总结当前对细胞衰老基本特征及其与年龄相关疾病的关系的知识。我们还将总结新兴的治疗策略,包括消除衰老细胞的药物(消除衰老细胞)和鼻型药物(调节衰老细胞的药物),并引入了最新发现和临床翻译。
图1。高度致病性的自身反应性CD4阳性T细胞(CXCR6阳性和SLAMF6阴性)表达miR-147-3p,抑制了趋化因子受体CXCR3的表达,并发挥了致病性。
garda.ie › 关于我们 › 出版物 PDF 2003 年 12 月 31 日 — 2003 年 12 月 31 日 可靠性、容错性,特别强调业务连续性 ... 国家数字无线电项目。