随着人工智能的发展,可穿戴视觉仿生设备正在取得显著进步。然而,传统的硅视觉芯片往往面临着高能量损失和模拟复杂生物行为的挑战。在本研究中,我们通过精心引导有机分子的排列,构建了范德华 P3HT/GaAs 纳米线 PN 结。结合肖特基结,这实现了多方面的类似鸟类的视觉增强,包括宽带非易失性存储、低光感知和接近零功耗的工作模式,无论是在单个设备和任意基板上的 5×5 阵列中。具体来说,我们实现了超过 5 位的内存传感和计算,具有负和正光电导性。当与两种成像模式(可见光和紫外线)结合时,我们的储层计算系统对颜色识别的准确率高达 94%。它实现了运动和紫外线灰度信息提取(显示防晒霜),从而实现融合视觉成像。这项工作为宽带、高度仿生的光电神经形态系统提供了有前景的材料和器件的联合设计。
摘要 — 在本研究中,我们提出了一种用于无线脉冲宽度调制 (PWM) 控制电源转换器的新方法,该方法适用于复杂配电系统中的众多电源转换器。此方法无需在分布式转换器模块之间建立多个门控/PWM 信号的物理连接。通过使用基于超宽带的通信,PWM 控制信号可以同时无缝地从中央控制器无线传输到多个转换器。系统稳定性经过彻底分析,实验结果验证了无线控制方案对于以 50 kHz 开关频率工作的降压转换器的有效性。从此设置获得的最小延迟为 5.38 μs。这种控制概念使高压电力系统中的分布式控制更容易实现,尤其是在多级架构中,即使在环境噪声恶劣的条件下也是如此。
高光谱成像提供高维空间光谱信息,揭示了内在物质特征1 - 5。在这里,我们报告了具有高空间和时间分辨率的片上计算高光谱成像框架。通过在图像传感器芯片上整合不同的宽带调制材料,目标光谱信息是非均匀且本质上与每个像素上与明亮吞吐量的。使用智能重建算法,可以从每个帧中恢复多通道图像,从而实现实时高光谱成像。在这样的框架之后,我们第一次使用光刻志上制造了宽带Vis-nir(400-1700 nm)高光谱成像传感器,平均光通量为74.8%和96个波长通道。证明的分辨率为124 fps的1,024×1,024像素。我们证明了其广泛的应用,包括用于智能农业,血液氧和水质监测的叶绿素和糖定量,用于人类健康,Tex-Tile分类和工业自动化的苹果瘀伤检测以及用于天文学的远程月球检测。集成的高压图像传感器仅称重数十克,并且可以在各种资源有限的平台上组装,也可以配备了OB-the Shelf Optical Systems。该技术改变了高维的挑战
宽带公平、接入和部署 (BEAD) 计划由《基础设施投资与就业法案》 (IIJA) 设立,为各州、领地和哥伦比亚特区(合格实体)提供 424.5 亿美元的资金,用于宽带规划、部署、测绘、公平和采用活动。国家电信和信息管理局 (NTIA) 作为负责管理 BEAD 计划的机构,发布了一份资助机会通知,描述了该计划的要求,包括要求每个合格实体提交一份初步提案,其中描述了选择分受助人的公平、公开和竞争性流程等。每个地点极高成本门槛是由合格实体确定并在分受助人选择过程中使用的每个地点的补贴成本,如果使用满足 BEAD 计划技术要求的替代技术成本更低,合格实体可以拒绝选择可靠宽带服务的提案。
在过去三年中,南加州政府协会(SCAG)和圣地亚哥政府协会(SANDAG)积极参与并促进了南加州(SOCAL)转型工作组。SOCAL转型工作组每月召集每月会议,并包括来自政府,非营利组织,教育,健康,互联网服务提供商(ISP)和其他私营部门的各个部门的代表。会议议程涵盖了许多关键主题,例如宽带的当前状况,相关立法发展,资助来源和持续的努力。此外,会议探索并讨论了旨在弥合数字鸿沟的解决方案和行动。通过在工作组内的对话中,来自公共部门和私营部门的利益相关者都指出了允许问题作为发展宽带基础设施发展的关键障碍。1,2
这里,S 是通过模拟得出的散射矩阵,其中对麦克斯韦方程进行了数值求解。参数 r 1 、t 1 、r 2 和 t 2 分别是 E in1 和 E in2 的单束光束的反射和透射系数。值得注意的是,在这种配置下,假设在此设置中互易性保持不变,则两个入射方向的透射系数相同(即 t = t 1 = t 2 )。反射的不对称性源于设计结构相对两侧排列的十字形石墨烯贴片的不同尺寸。
摘要 本文研究了一种具有可变增益控制的 60 GHz 低功耗宽带低噪声放大器 (LNA)。为了证明这一概念,该电路采用 22 nm 全耗尽绝缘体上硅 (FD-SOI) CMOS 技术实现。它通过增益峰值(增益分配)技术支持 60 GHz 的宽带操作。通过调整放大器的一些关键匹配网络,每级的峰值增益被分配到不同的频率,从而产生整体宽带频率响应。该电路由三个级联共源共栅放大器级组成。匹配网络针对带宽和噪声系数进行了优化。晶体管背栅用于 LNA 设计,以将电路切换到低功耗待机模式。这避免了基于前栅的切换在电压击穿和电路稳定性方面的问题。此外,通过背栅实现了在如此高频率下同时实现可变增益控制。与基于前栅的相比,基于背栅的可变增益控制可以实现增益的连续微调,同时对控制电压的精度或分辨率要求较低。在测量中,增益通过背栅成功从 20 dB 调低至 − 25 dB。在 1 V 标称电源的 8.1 mW 直流功率下,LNA 提供 20 dB 的峰值增益、18.5 GHz 的带宽和 3.3 dB 的最小噪声系数。当偏置在 0.4 V 的降低直流电源下时,所给出的电路仅消耗 2.5 mW 的直流功率,并且仍然提供 10 dB 的功率增益和约 4.5 dB 的最小噪声系数。通过切换到待机模式,LNA 在标称电源下消耗 850 µ W 的直流功率,在降低电源下消耗 240 µ W 的直流功率。与之前报告的设计相比,LNA 表现出色,具有最低的噪声系数以及具有竞争力的增益、带宽和直流功率。据作者所知,这是第一款通过单独的背栅偏置具有联合可变增益控制和切换功能的 60 GHz LNA。
现有电信(电信)宽带互联网提供商广泛采用了FTTH的使用,其中许多过度建筑的现有铜扭曲的配对电话网络曾经使用数字订户线(DSL)用于宽带互联网服务。当然,除了有线电视和电信运营商之外,超过1,100多个光纤宽带服务提供商已经部署了FTTH和PON技术多年了,这些部署仍在迅速增长。HFC和光纤网络的碳足迹计算基于当前来源;但是,在两个生态系统中都进行了持续的改进,因此这些发现将继续发展。例如,这些生态系统中的公司正在努力减少材料,包装和电源的使用,并且使用可回收材料和可再生电源的使用将有所增加,所有这些都将减少碳足迹。一些企业正在接受循环经济的概念,在这种经济中,材料被回收以减少浪费。虽然100%的循环经济与当前和近期技术不切实际,但采用此类理念将继续减少碳足迹。
1个化学与化学工程学院,哈尔滨理工学院,中国150001年西达齐街92号; larisa.latypova@hit.edu.cn 2 Zhengzhou研究所,Harbin理工学院,Longyuan East 7th Street和Longhu East East 7th Street和Longhu Central North Road,Zhengdong New District,Zhengzhou 450046 450046,中国3号kazan Federal University of Kazan University,KeremleveSkaya,450046,KRUSSAN,KEREAVSKAYA,45008,4500088.2000 keria keria keria,42000; georgemamin@gmail.com(G.M. ); margaritaasadov@gmail.com(M.S.) 4巴黎的纳米科学研究所,校园皮埃尔·玛丽·库里(Pierre et Marie Curie),索邦纳大学(Sorbonne Universit),4,Place Jussieu,75005 Paris,Paris,法国; vonbarde@insp.jussieu.fr 5 Istituto di struttura della Materia,Consiglio Nazionale Delle Ricerche,ISM-CNR,通过Del Fosso del cavaliere 100,00133 Rome,00133 Rome,00133 ROME,意大利,意大利6分析,物理化学,和胶体化学,I.M.M.M.M.M. Sechenov First Moscow State医科大学,Trubetskaya 8,Build。 2,119048俄罗斯莫斯科 *信件:Murzakhanov.fadis@yandex.ru(F.M. ) ); giulietta.rau@ism.cnr.it(j.v.r。)1个化学与化学工程学院,哈尔滨理工学院,中国150001年西达齐街92号; larisa.latypova@hit.edu.cn 2 Zhengzhou研究所,Harbin理工学院,Longyuan East 7th Street和Longhu East East 7th Street和Longhu Central North Road,Zhengdong New District,Zhengzhou 450046 450046,中国3号kazan Federal University of Kazan University,KeremleveSkaya,450046,KRUSSAN,KEREAVSKAYA,45008,4500088.2000 keria keria keria,42000; georgemamin@gmail.com(G.M.); margaritaasadov@gmail.com(M.S.)4巴黎的纳米科学研究所,校园皮埃尔·玛丽·库里(Pierre et Marie Curie),索邦纳大学(Sorbonne Universit),4,Place Jussieu,75005 Paris,Paris,法国; vonbarde@insp.jussieu.fr 5 Istituto di struttura della Materia,Consiglio Nazionale Delle Ricerche,ISM-CNR,通过Del Fosso del cavaliere 100,00133 Rome,00133 Rome,00133 ROME,意大利,意大利6分析,物理化学,和胶体化学,I.M.M.M.M.M.Sechenov First Moscow State医科大学,Trubetskaya 8,Build。2,119048俄罗斯莫斯科 *信件:Murzakhanov.fadis@yandex.ru(F.M. ) ); giulietta.rau@ism.cnr.it(j.v.r。)2,119048俄罗斯莫斯科 *信件:Murzakhanov.fadis@yandex.ru(F.M.); giulietta.rau@ism.cnr.it(j.v.r。)
1邀请谈话5 1.1会议1。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 1,2会议2。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 1.3会议3。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.4会议4。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.5会议5。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.6会议7。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 1.7会议8。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13