在以相互交织的电子订单和超导性为特征的非常规超导体的错综复杂的相图中,了解超导机制的关键步骤是研究超导性通过掺杂或压力出现超导性的母体化合物。在这项研究中,我们采用了光谱和超快反射率测量,以检查三层镍镍4 Ni 3 O 10中的密度波不稳定性,它显示出高达30 K的压力诱导的超导性。我们的光学频谱测量表明,La 4 Ni 3 O 4 ni 3 O 10具有高pLASMA频率的金属。冷却后,我们观察到在光学电导率和泵探针测量中,密度波能隙的明显形成。与双层镍LA 3 Ni 2 O 7相比,间隙特征更为明显。通过将实验确定的等离子体频率与第一原理计算进行比较,我们将LA 4 Ni 3 O 10分类为一种中等电子相关的材料,类似于基于铁的超导体的母体化合物,但与Bielayer NikeLate La 3 Ni 2 O 7相比表现出较弱的相关性。LA 4 Ni 3 O 10中增强的间隙特征和较弱的电子相关性可能解释了其在高压下的较低的超导性过渡温度。这些发现显着提高了我们对三层镍LA 4 Ni 3 O 10中密度波和超导性机制的理解。
X.du 1,Y。D. Li 1,Y。T. Cao 2,3,C。Y. Pei 4,M。X. Zhang 4,W。X. Zhao 1,K。Y. Y. Zhai 1,R。Z. Xu 1,Z.
1 康奈尔大学原子和固体物理实验室,纽约州伊萨卡 14853,美国 2 康奈尔大学 Kavli 纳米科学研究所,纽约州伊萨卡 14853,美国 3 巴黎理工学院法国国家科学研究中心 CEA / DRF / iRAMIS 固体辐射实验室,F-91128 Palaiseau,法国 4 安第斯大学物理系,波哥大 111711,哥伦比亚 5 马里兰大学物理系马里兰量子材料中心,马里兰州帕克分校,20742,美国 6 加州大学圣巴巴拉分校材料系,加利福尼亚州圣巴巴拉 93106,美国 7 美国国家标准与技术研究院 NIST 中子研究中心,100 Bureau Drive,盖瑟斯堡,马里兰州 20899,美国 8加拿大高级研究院,加拿大安大略省多伦多,M5G 1M1
该研究团队使用扫描隧道显微镜(STM)在NBSE 2中捕获了CDW的高分辨率图像,该扫描隧道显微镜(STM)能够以原子级分辨率对结晶表面进行成像。随后,团队成功地清楚地对以星形和三叶草形CDW结构为特征的域的分布模式通过数值确定相对于观察到的原子晶格的位移而进行了。
电荷密度波(CDW)是电子密度和原子位置的调制,其周期性不同于(通常与)基础的晶格[1]。CDW出现在各种材料中,它们可以内在地引起金属 - 绝缘体过渡[2]。CDW被认为是由嵌套,电子偶联,激子机制或其组合驱动的[1,3]。在这里,我们表明CDW也可以与CDW周期性以外的波矢量的基础晶格的变形有关。CDW与其他顺序参数的耦合(在元素硫的本情况下的晶格失真)不仅是CDW机制的一部分很重要,而且还改变了相变的特征。CDW以八个元素形成,其中七个处于高压[4-21]。CDW相的压力诱导的ONES集始终是第一阶转变,而高压转变归因于第一阶或二阶转变,通常涉及结构或光谱数据的外推[8,10,10,10,12 - 14,14,16,20,20,22,22]。如果CDW相是纯粹位移性的结构相变
1 加州大学河滨分校伯恩斯工程学院电气与计算机工程系纳米器件实验室,加利福尼亚州河滨市 92521,美国 2 波兰科学院高压物理研究所 CENTERA 实验室,波兰华沙 01-142 3 加州大学河滨分校伯恩斯工程学院材料科学与工程项目声子优化工程材料中心,加利福尼亚州河滨市 92521,美国 4 格但斯克理工大学计量与光电子系,波兰格但斯克 80-233 5 华沙理工大学 CEZAMAT 先进材料与技术中心,波兰华沙 02-822 6 蒙彼利埃大学和法国国家科研中心查尔斯库仑实验室,法国蒙彼利埃 34950美国加利福尼亚州里弗赛德市 92521
我们在单轴电荷密度波(CDW)的基端状态下,在强烈的外部磁磁场垂直于导电平面的情况下,在单轴电荷密度波(CDW)的基底状态下,在单轴电荷密度波(CDW)的基础状态下,在单轴电荷密度波(CDW)的基础状态下报告了磁性电导率量σ。单轴电荷否定波将最初闭合的费米表面重建为开放的表面,并伴随着在费米能量周围状态的电子密度中形成伪间隙。在量子密度矩阵和半经典磁分解方法中计算了磁性张量,该方法着重于主,所谓的“经典”对磁磁性的贡献,这是通过磁故障对磁导体的贡献,忽略了较高的校正。In the presence of magnetic breakdown, in spite of open Fermi surface configuration, all classical magnetoconductivity compo- nents, the one along the CDW apex σ xx ∼ B − 2 , perpendicular to the CDW apex σ yy ∼ const, as well as the Hall conductivity σ xy ∼ B − 1 , undergo strong quantum oscillations vs. inverse magnetic field.这些振荡并不是仅仅是添加剂校正,而是改变经典结果成为其固有的部分,将其转变为本质上是非古典的。
在理论上提出了高度相关的kagome系统中的超导性多年(参考文献1–5),但是实现实现很难实现6,7。最近发现的基于钒的kagome材料8,表现出超导性9-11和电荷密度波订单12-14,是非磁性的8,9,弱相关的15,16。因此,这些材料不太可能主持外来的超导性。在这里,我们报告了基于铬的kagome金属CSCR 3 SB 5的发现,与Fermi级别接近的较强的电子相关性,沮丧的磁性和特征性的平面带相反。在环境压力下,这种kagome金属在55 K处进行同时存在的结构和磁相变,具有条纹样4 A 0结构调制。在高压下,相跃迁演变为两个转变,可能与电荷密度波和抗磁性自旋密度波订购有关。这些密度波的订单逐渐被压力抑制,显着地,超导圆顶出现在3.65–8.0 GPA。超导过渡温度的最大t c max = 6.4 k,当密度波状的订单在4.2 GPA处完全抑制时出现,而正常状态表现出非常规超导性和量子的非常规超导性和量子性的行为,而基于铁的超电导超导量的量子则是17,18。我们的工作提供了一个空前的平台,用于研究相关的kagome系统中的超导性。
分层材料可以组装新类的异质结构,其中不再需要晶格匹配。界面成为未开发物理的肥沃地面,因为可以通过接近效应耦合不同的现象。在本文中,当Mose 2与Tise 2相互作用时,我们确定了意外的光致发光(PL)峰。一系列依赖温度依赖性和空间分辨的PL测量结果表明,与中性激子相比,该峰是Tise 2 - Mose 2界面所独有的,能量更高,并且具有激子样特性。该特征在Tise 2电荷密度波转变下消失,这表明密度波在这种新激子的形成中起着重要作用。我们提出了有关该峰的起源的几个合理的方案,这些方案单独捕获了我们观察的某些方面,但无法完全解释此功能。因此,这些结果代表了理论社区的新挑战,并通过与电荷密度波的相互作用来设计一种令人着迷的方法来设计激子。©2022作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1063/5.0067098