X.du 1,Y。D. Li 1,Y。T. Cao 2,3,C。Y. Pei 4,M。X. Zhang 4,W。X. Zhao 1,K。Y. Y. Zhai 1,R。Z. Xu 1,Z.
最近的实验进步已建立了扭曲的双层过渡金属二甲元化(TMD),它是研究多体物理学的高度可调平台。尤其是,据信,位移场下的同型TMD被认为是由具有自旋依赖性跳相θ的广义三角晶格哈伯德模型描述的。为了探索θ对系统的影响,我们对相关的三角晶格T-J模型执行密度矩阵重新归一化组计算。通过在小孔掺杂下更改θ,我们获得了一个准长范围的超导顺序,并在0 <θ<π/ 3中与电荷和自旋密度波共存。 div>超导性由主导的旋转单线d波和亚尺寸三重态P-波配对组成。有趣的是,S z =±1三个三个配对组件具有配对密度波。此外,我们发现了一个三胞胎超导率区域,与π/ 3 <θ<2π/ 3内的电荷密度波和铁磁性共存,该区域通过spin-flip和衡量变换的联合操作在较小的θ下与以前的相位相关。我们的发现为扭曲TMD系统中的外来超导性提供了实验性搜索的见解和方向。
二维(2D)材料中的电荷密度波(CDW)一直是冷凝物物理学的主要研究重点,因为它们的潜力是基于量子的技术。尤其是CDW可以通过耦合两个Dirac Fermions来诱导金属 - 绝缘体过渡,从而导致拓扑阶段的出现。在此思想之后,我们在这里探索了2D层次材料中三种不同CDW的行为,使用密度功能理论计算和实验合成以研究其稳定性。其大块对应物的分层结构SN 4 P 3表明,可以通过化学方法将结构合成到单层。然而,尽管批量稳定,但单层在布里渊区的K和M点显示不稳定的声子,这导致了三个可能的CDW阶段。所有三个CDW都导致了亚稳态绝缘阶段,在k点中,由活性声子驱动的阶段在应变下拓扑上是非平凡的。引人注目的是,仅由于存在强烈的鼻anmon效应而揭示地面结构。这强调了研究CDW超出常规谐波图片的重要性,在该图片中,系统的基态可以仅从谐波声子光谱中阐明。
原子的精确排列和性质驱动凝结物质中的电子相变。为了探索这种微弱的联系,我们开发了一种在低温温度下工作的真正双轴机械变形装置,与X射线衍射和运输测量值兼容,非常适合分层样品。在这里我们表明,TBTE 3的轻微变形对其电荷密度波(CDW)具有显着影响,并具有从C到A / C参数驱动的方向转变,A = C附近的微小的同存区域,并且没有空间组的变化。CDW过渡温度t c在a = c 1 r的线性依赖性中,而间隙从共存区域中饱和。这种行为在紧密结合的模型中得到很好的解释。我们的结果质疑RTE 3系统中的间隙和T C之间的关系。此方法为研究中共存或竞争的电子订单的研究开辟了新的途径。
电荷密度波(CDW)是电子密度和原子位置的调制,其周期性不同于(通常与)基础的晶格[1]。CDW出现在各种材料中,它们可以内在地引起金属 - 绝缘体过渡[2]。CDW被认为是由嵌套,电子偶联,激子机制或其组合驱动的[1,3]。在这里,我们表明CDW也可以与CDW周期性以外的波矢量的基础晶格的变形有关。CDW与其他顺序参数的耦合(在元素硫的本情况下的晶格失真)不仅是CDW机制的一部分很重要,而且还改变了相变的特征。CDW以八个元素形成,其中七个处于高压[4-21]。CDW相的压力诱导的ONES集始终是第一阶转变,而高压转变归因于第一阶或二阶转变,通常涉及结构或光谱数据的外推[8,10,10,10,12 - 14,14,16,20,20,22,22]。如果CDW相是纯粹位移性的结构相变
分层材料可以组装新类的异质结构,其中不再需要晶格匹配。界面成为未开发物理的肥沃地面,因为可以通过接近效应耦合不同的现象。在本文中,当Mose 2与Tise 2相互作用时,我们确定了意外的光致发光(PL)峰。一系列依赖温度依赖性和空间分辨的PL测量结果表明,与中性激子相比,该峰是Tise 2 - Mose 2界面所独有的,能量更高,并且具有激子样特性。该特征在Tise 2电荷密度波转变下消失,这表明密度波在这种新激子的形成中起着重要作用。我们提出了有关该峰的起源的几个合理的方案,这些方案单独捕获了我们观察的某些方面,但无法完全解释此功能。因此,这些结果代表了理论社区的新挑战,并通过与电荷密度波的相互作用来设计一种令人着迷的方法来设计激子。©2022作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1063/5.0067098
我们对凝结问题的理解正在迅速发展,目前,该领域获得的许多新见解在很大程度上定义了当代科学的面貌。此外,该领域的发现正在塑造现在和未来的技术。如此,很明显,未来发展的最重要结果和指示只能由合作的国际作家群体涵盖。“凝结物质科学中的现代问题”是一系列关于凝结物质科学的贡献和专着,该杂志是由Elsevier Science Pubishers的部门North-Holland Pharpisher出版的。在杰出的咨询编辑委员会的支持下,该系列选择了当前感兴趣的领域,这些领域已予以审查。苏联和西方学者都在为该系列做出贡献,因此,每个贡献的数量都有两个编辑。单图。完整系列将提供冷凝物质科学的最全面覆盖范围。本系列基础的另一个重要结果是,来自不同国家的学者之间一种相当有趣且富有成果的合作形式。我们深信,这种在科学与艺术领域以及其他对人类活动的社会有用领域的国际合作将有助于建立信心与和平的氛围。出版社“ Nauka”出版了俄罗斯语言的卷。以这种方式确保了最广泛的读者群。
1 加州大学河滨分校伯恩斯工程学院电气与计算机工程系纳米器件实验室,加利福尼亚州河滨市 92521,美国 2 波兰科学院高压物理研究所 CENTERA 实验室,波兰华沙 01-142 3 加州大学河滨分校伯恩斯工程学院材料科学与工程项目声子优化工程材料中心,加利福尼亚州河滨市 92521,美国 4 格但斯克理工大学计量与光电子系,波兰格但斯克 80-233 5 华沙理工大学 CEZAMAT 先进材料与技术中心,波兰华沙 02-822 6 蒙彼利埃大学和法国国家科研中心查尔斯库仑实验室,法国蒙彼利埃 34950美国加利福尼亚州里弗赛德市 92521
在密切相关的5 f-电子系统中,由于波函数的扩展,与可比强度的相互作用竞争。这场竞争导致了各种各样的外来状态,这几乎无法用D - 或4 F-电子物理学的常规模型来理解[1]。在基于金属U的重型费米化合物中,周围配体具有强大的杂交作用,异常阶段的异常共存发生为例如,例如,在隐藏的阶超导体URU 2 SI 2中。发现热量异常的“隐藏顺序”参数的性质仍在辩论之后,在发现后30年以上[2]。UPT 2 Si 2是U T 2 M 2(T =过渡金属; M = SI或GE)家族的紧密相关的金属间化合物,其PT-5 D电子与U-5 F状态杂交。UPT 2 Si 2采用CABE 2 GE 2晶体结构,并在t n = 35 k处磁性下命令,带有波矢量q m =(1 0 0 0),其中铁磁AB平面沿C轴堆叠了抗磁力(AFM),沿C轴堆叠,并具有≈2μb[3-5]。因此,长期以来,UPT 2 Si 2被认为是铀间金属化合物具有局部5 F电子的罕见例子,在简单的晶体领域水平方案中可以解释磁性[4]。然而,最近的一些研究[6-9]质疑该系统中电子定位程度。高场测量结果表明,应根据费米表面效应来理解应用磁场下的相变[6]。最近的一项无弹性中子散发研究揭示了双重性质,两者都巡回通过密度功能理论(DFT)计算进一步支持这种方法,该计算有利于5 f电子大部分巡回的情况[7]。