作为与监管机构和审计师打交道的CISO,必须能够证明安全控制的有效性;由于加密如此普遍,并且具有如此多的遗产解决方案,再加上加密协议可能会协商弱密码的事实,建立所需的高度保证是一个巨大的挑战。cisos必须基于被认为是这种情况而不是一定是现实的默认假设。因此,CISO可能会陷入na乱的疑问,并以残余风险为由。对于审计师来说也是如此。实际和现实之间的感知差距可能不会被忽略,直到审计师通过配置异常确定弱点为止。
CRISPR 是一种基因编辑技术,它利用一种名为 Cas9 的特殊蛋白质复制细菌的天然防御机制来抵抗病毒攻击。CRISPR-Cas9 技术对含有遗传信息的 DNA 链的作用类似于剪切粘贴机制。在 DNA 链上确定需要更改或编辑的遗传密码的具体位置,然后使用 Cas9 蛋白(其作用类似于剪刀)将该位置从链上剪下。DNA 链断裂后具有自然修复的倾向。科学家会介入这一自我修复过程,提供所需的遗传密码序列,使其与断裂的 DNA 链结合。
密码相关量子计算机 (CRQC) 是一种利用量子力学现象作为计算元素的计算机,其操作参数足以在短时间内破解当今最常用的一些密码算法。在某些情况下,破解密码的时间预计以分钟或小时为单位。目前存在更小、性能更差的量子计算机,但创建 CRQC 超出了现有技术的能力。然而,每年有数百亿美元用于研究以实现 CRQC。几十年来,人们一直在问“阻碍创建密码破解量子计算机的问题和技术障碍能否被克服”。现在人们普遍认为,问题是“何时”解决这些问题。
量子退火是一种量子计算方法,可作为通用量子计算的替代方案。但是,密码学界目前并不认为量子退火对密码算法构成重大威胁。最近的研究表明,量子退火可用于流密码的有效密码分析。此外,尽管需要进行额外的分析,但使用量子退火进行密码分析似乎只需要相对较少的资源,这表明它具有实际适用性。这与 Grover 算法形成鲜明对比,后者需要具有相当深度的量子电路和数十亿个量子门。本文将探讨如果不认真对待量子退火的影响,潜在的网络安全风险。
遗传密码是分子生物学的基础,已经使科学家着迷了数十年。它是将DNA中核苷酸序列转化为形成蛋白质的氨基酸的通用语言。然而,尽管它在生物学中起着至关重要的作用,但遗传密码并不是静态的。它随着时间的流逝而发展,适应环境压力和生物学需求。推动遗传密码演变的关键因素之一是密码子保守变化的概念。这些变化,涉及密码子序列的修改而不改变所得蛋白质,突出了遗传密码的灵活性和适应性。本文解释了遗传密码通过密码子的保守变化,这种进化背后的机制以及对理解生命复杂性的影响而发展的。