摘要:加强学习的最新进步使得培养足球代理人,以模仿人类球员的行为。但是,现有方法成功复制现实的玩家行为仍然具有挑战性。实际上,代理商表现出诸如在球周围聚集或过早射击之类的行为。此问题的一个原因在于奖励功能总是为某些行动分配巨大的奖励,例如得分目标,无论情况如何,这种情况都会使代理人偏向高奖励行动。在这项研究中,我们将相对位置奖励和拍摄的位置重量纳入用于增强学习的奖励功能中。相对位置奖励,源自球员,球和目标的位置,是使用逆强化学习在真正的足球游戏数据集中估算的。拍摄的位置重量类似地基于这些游戏中观察到的实际射击位置。通过在真正的足球游戏中获得的数据集中进行实验,我们证明了相对位置奖励有助于使代理商的行为与人类玩家的行为更加紧密地保持一致。
位翼攻击(BFA)涉及操纵模型参数位以显着破坏其准确性的对手。他们通常针对最脆弱的参数,最大程度地损坏了最大的位置。虽然BFAS对深神经网络(DNN)的影响进行了充分研究,但它们对大语言模型(LLM)和视觉变形金刚(VIT)的影响尚未受到相同的关注。受到“大脑重新打开”的启发,我们探索了增强反式造物对此类攻击的弹性。这种潜力在于基于变压器模型的独特架构,特别是它们的线性层。我们的新颖方法称为“忘记”(Loss and Rewire)(FAR),从策略上使用重新布线来将线性层用于混淆神经元的连接。通过将任务从关键神经元重新分布,我们在保留其核心功能的同时降低了模型对特定参数的敏感性。此策略阻碍了对手的意见,可以使用基于梯度的算法来识别和靶向至关重要的参数。我们的方法隐藏了关键参数,并增强了对随机攻击的鲁棒性。对广泛使用的数据集和变压器框架进行了全面的评估表明,远处的机制显着使BFA的成功率降低了1.4至4.2倍,而精度损失最小(小于2%)。
摘要本研究强调了位于西孟加拉邦北部24 Parganas区的Birati Town的鸟类物种的多样性和丰度。这项研究是对Birati镇鸟类动物区系的现有品种和分布的首次全面,彻底的研究,到目前为止,尚无公开报告。这项为期一年的研究,从2023年1月至2023年12月进行,记录了该镇30个家庭和12个订单的70种鸟类。在比拉蒂(Birati)中,最大的物种多样性是在passeriformes中发现的,而ardeidae,cuculidae和picidae家族在研究过程中记录的鸟类数量最多。本研究的结果表明,尽管是人口稠密的城市地区,Birati Town拥有一个需要积极监测和保护的丰富的鸟类动物群。关键词:物种,多样性,丰富,鸟类,比拉蒂,西孟加拉邦
当地水稻农民的生计与农民实施的农业创新技术的成功有关。农业技术大大改善了农业方法,使农业效率更高,并增加了更多的食物,从而实现了粮食安全。这项研究调查了农业创新对卡拉潘市几个境内的当地水稻农民生计的影响。该研究使用了相关定量研究设计。通过调查工具收集数据。这项研究的重点是来自位于Barangays Pachoca,Tawiran,Masipit,Canubing II的244名当地农民的244名受访者,将Tubig,Biga和Bucayao放置。通过研究农业创新的指标及其对当地农民生计的影响,研究人员发现,农业创新对农民生计的各个方面产生了深远的积极影响。农业创新对于加强卡拉潘市当地农民的生计是重要的和必要的。因此,这项研究表明,当地农民应保持开放的思想,并不断利用创新的农业化学和农业技术,以增强下一代的可持续生计。
多种因素导致 Yulee 工厂产生异味,其中最主要的是温度较低、降雨量较大以及维护该设施所需的固体移动。该工厂类似于堆肥堆,由当地 Rayonier Advanced Materials' (RYAM) 工厂产生的无害有机“加工残留物”组成。这些“加工残留物”主要来自树木。它们包括纤维素纤维、木质生物质和动力锅炉产生的木灰。这些材料的分解会产生气味,如上所述,在某些条件下气味会变得更加明显。重要的是,Yulee 设施不处理垃圾、人类排泄物或传统“垃圾”(这些垃圾在其他市政设施处理)。为什么气味比以前更严重?
Meridian Economics 和 CSIR 最近对南非电力系统进行的评估(以下简称“Meridian 研究”)清楚地表明,电网成本最低的方案是在短期内迅速建设大量风能和太阳能发电设施。为了提高灵活性,可以向电网增加少量天然气发电设施,但直到 2030 年代中期,唯一需要的只是极少使用的“峰值”容量(约占其可用性的 2%)。在此之前,现有发电机可以继续使用柴油来满足电力需求高峰时段的可靠性需求。这种成本最低的途径避免建设昂贵的天然气基础设施,除非有需求并且经济上合理,避免过早且可能不必要地锁定长期燃料成本承诺。
在这项工作中,设计和优化了两个位于质量质量较差的岩石质量质量较差的通用画廊的SUP港口,并受到高厚度煤层开发的影响。该过程分为四个阶段:使用不同的地质力学分类并使用螺栓和shotcrete应用新的奥地利隧道方法(NATM)来定义第一个初步支持。进行了仪器运动,目的是分析支持的行为。该研究注意到由于放置不同元素的时间而导致的支撑失败。使用FLAC和相软件进行的反分析允许评估岩石质量的性质和支撑,研究放置时间对组件元素(螺栓和shotcrete)的影响以及支持的重新定义。随后,在开采挖掘后,通过数值建模设计和优化了新的支持,而在这些尺寸的巨大腔体中没有经验,这会导致先前设计的支持的故障。新的支撑是由可屈服的钢拱形成的,这些拱门更适合承受附近采矿作品产生的应力。
欧洲委员会要求对经过遗传修饰的有机体(GMO)进行EFSA小组,以评估第4节(危险识别)以及EFSA科学意见对使用锌型3型技术(ZFN-3)的工厂开发的植物开发的植物的科学意见(Zfn-3)和其他核定型(ZFN-3)的植物(ZFN-3)的效果(ZFN-3)(ZFN-3)的作用( SDN-1,SDN-2和寡核苷酸指导的诱变(ODM)。在发表这种意见时,GMO面板将与通过SDN-1,SDN-2和ODM产生的植物与与通过SDN-3和常规育种获得的植物相关的植物进行了比较。与SDN-3方法不同,SDN-1,SDN-2和ODM方法的应用旨在以一种可能导致植物不包含任何转基因,内元或顺式的植物来修饰基因组序列。因此,GMO面板得出结论,这些考虑与第4节中包含的转基因,内元或面条的存在,以及SDN-3的意见的结论无关,与通过SDN-1,SDN-1,SDN-2或ODM获得的植物无关。总体而言,与SDN-3和常规育种相比,GMO面板没有发现与通过SDN-1,SDN-2或ODM产生的基因组修饰的新危害。此外,转基因专家小组认为,现有的对遗传修饰工厂的食物和饲料的风险评估指南以及对遗传修改工厂的环境风险评估的指南,但仅部分适用于通过SDN-1,SDN-1,SDN-2或ODM生成的工厂。的确,如果最终产物的基因组不包含外源性DNA,则这些与外源性DNA有关的指导文档的要求与通过SDN-1,SDN-2或ODM接近开发的植物的风险评估无关。
13. 摘要(最多 200 个字)无人机系统 (UAS) 的普及加剧了恶意行为者利用该技术进行恶作剧或伤害的不对称威胁。现有的地面解决方案受到视线的限制,而人工操作的响应无人机响应速度较慢且劳动强度较大。因此,需要具备基于视觉的自主追击和拦截未经授权的无人机的能力。为了解决这个问题,作者开发了一种计算机视觉 (CV) 算法,用于在现场条件下检测、跟踪和估计悬停和移动的空中小型 UAS 目标的相对位置和范围。将基于 CV 的测量结果与 GPS 数据进行比较,以评估 CV 算法的范围和角度估计性能。然后,飞行控制算法利用简单的角度制导原理处理 CV 估计的范围和角度信息以追击和拦截目标。使用原型无人机对该算法进行了现场测试。这项研究将为商用现货反无人机能力的概念设计和硬件实现选择提供参考。更广泛地说,这项研究为自主物体跟踪应用的知识体系做出了贡献。
3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159